中國大陸近年致力發展其國內技術研究產業,但在基礎研究經費申請制度上,長期存在一些結構問題,如在科研資助、實施和成果傳播三個階段。故自2017年起,中國大陸陸續修正關於科研經費制度,以使科技研究人員得以順利進行科研項目。截至目前,依中國大陸國發〔2018〕25號文為基準,江蘇省推出《關於深化科技體制機制改革推動高品質發展若干政策》(下簡稱『江蘇科技改革30條』),並出台完整的實用手冊 。
此次江蘇科技改革30條,明確落實中央對科研經費鬆綁及對科研結果獎勵與容錯的改革措施。在科研經費可直接列支項目的直接預算,如設備費、材料費等,從原本九個項目改合併為五個項目,科目經費支出將不再受比例限制;另在無法直接羅列預算項目的間接預算上,如績效支出等費用則精簡列支項目,提高間接費用核定比例。在科研結果獎勵與容錯改革上,建立原創成果獎勵機制、創新補償機制、援助機制及免責機制。
中國大陸科研經費長期採用嚴格預算制,直接預算需按照法律規範羅列,然間接預算部分常使研究人員因不知如何羅列,而導致研究經費中斷或減少。對於較易失敗的基礎研究上,研究人員則擔心在階段性考核中因錯誤致使研發經費無法取得,進而將錯就錯,謊報研究成果。此次江蘇科技改革30條修正,解決了上述科研經費制度的部分問題,並具體規範了實務上的操作。然各部會間如何解決關於監管經費結餘規範之法律衝突,及科研成果容錯機制之評價,仍待後續觀察。
日本經濟產業省利用網絡積累巨量資料(BIG DATA)及人工智慧(AI)技術,應用民營企業相關資訊,開發和測試新經濟指標,分別於2017年7月19日及2018年1月8日公開該指標。為達到及早準確掌握經濟動向,對巨量資料等新資料之利用期待越來越高,政府部門也將利用巨量資料及人工智慧技術等方法,針對統計技術進行改革,。 新開發之指標有:1.SNS×AI商業信心指數(SNS×AI景況感指数):乃是透過人工智慧抽取關於商業信心的網路文章,並進行情緒(正/負)評估計算指數,期待有效地估計以每日為頻率之商業信心。2.SNS×AI礦工業生產預測指數(SNS×AI鉱工業生産予測指数):利用人工智慧選取有關工作和景氣之網路相關文件,結合「開放數據」之統計等技術,並利用人工智慧「機械學習」之手法,來預測「工業生產指數」。3.銷售點資訊管理系統(POS,point-of-sale)家電量販店銷售趨勢指標(POS家電量販店動向指標):透過收集具有銷售點資訊管理系統(POS)的家用電子大型專賣店的銷售資料,期待可以掌握每一日之「銷售趨勢」。 新的指數與既存統計指數,如景氣動向指數、中小企業信心指數、工業生產指數、商業動態統計等,其調查週期、公布頻率等,既存指數每月調查公布,新指數則進步至每日調查或每週公布等,在計算及呈現頻率上較既有更為精細。日本政府並設立「Big Data-STATS」網站,以實驗性質公佈上述經濟指標,並廣泛收納民眾意見以提高新指標的準確性。
從交易成本概念談智慧財產資訊揭露的原則與效益 污者自付 中國大陸擬徵生態稅中國大陸能源基金會副主席楊富強日前透露,能源基金會、世界自然基金會與國家財政部正在研討開徵「生態稅」。目前,正在為能源對環境的影響成本進行核算,年內相關草案將出爐。 據中國大陸媒體報道,世界自然基金會氣候變化與能源項目負責人甘霖表示,生態稅主要目的就是為了保護生態環境和自然資源,向所有因其生產和消費而造成外部不經濟的納稅人課徵的稅收。 生態稅涉及所有消費化學能源的行業,讓企業去承擔環境成本,實現生態和資源價值的合理補償。目前,生態稅的標準正在研討中,不同的行業對應不同的稅收標準。這個標準與企業的排放有關。根據企業排放量的多少,制定一個限定的比例,再乘以企業的年生產量。也就是說,「企業污染的越多,承擔的環境成本就會越高。」 甘霖指出,目前綠色能源的環境績效還不能完全轉化為經濟效益,綠色能源單位建設投資高及利用率偏低,造成綠色能源價格較高,從而無法與傳統能源競爭,成為影響綠色能源發展的一個瓶頸。現在運用稅收手段,徵收生態稅,就是要使傳統能源價格升高,從而縮小傳統能源與綠色能源之間的差價,推動全社會積極使用綠色能源。