中國大陸近年致力發展其國內技術研究產業,但在基礎研究經費申請制度上,長期存在一些結構問題,如在科研資助、實施和成果傳播三個階段。故自2017年起,中國大陸陸續修正關於科研經費制度,以使科技研究人員得以順利進行科研項目。截至目前,依中國大陸國發〔2018〕25號文為基準,江蘇省推出《關於深化科技體制機制改革推動高品質發展若干政策》(下簡稱『江蘇科技改革30條』),並出台完整的實用手冊 。
此次江蘇科技改革30條,明確落實中央對科研經費鬆綁及對科研結果獎勵與容錯的改革措施。在科研經費可直接列支項目的直接預算,如設備費、材料費等,從原本九個項目改合併為五個項目,科目經費支出將不再受比例限制;另在無法直接羅列預算項目的間接預算上,如績效支出等費用則精簡列支項目,提高間接費用核定比例。在科研結果獎勵與容錯改革上,建立原創成果獎勵機制、創新補償機制、援助機制及免責機制。
中國大陸科研經費長期採用嚴格預算制,直接預算需按照法律規範羅列,然間接預算部分常使研究人員因不知如何羅列,而導致研究經費中斷或減少。對於較易失敗的基礎研究上,研究人員則擔心在階段性考核中因錯誤致使研發經費無法取得,進而將錯就錯,謊報研究成果。此次江蘇科技改革30條修正,解決了上述科研經費制度的部分問題,並具體規範了實務上的操作。然各部會間如何解決關於監管經費結餘規範之法律衝突,及科研成果容錯機制之評價,仍待後續觀察。
創用CC(Creative Commons)的聯合創始人萊斯格在被強制移除他放在Youtube上的演講影片,影片包含群眾跳舞與受版權保護的音樂的剪輯,萊斯格之後即向美國聯邦法院提出申訴。 創用CC是一個非營利組織,創造各種自由的權利去促進著作的分享利用。 根據週四在美國麻塞諸塞區地方法院的訴狀,哈佛法學院教授萊斯格在2010年6月在南韓首爾一場創用CC的會議上,發表「文化與科技創新的現在和過去」的演講,此演講包含業餘音樂影片的剪輯,描繪一群人隨著法國樂隊「鳳凰」演奏的Lisztomania歌曲跳舞。 演講的影片在今年6月被放在Youtube網站上,萊斯格在6月30日接獲Youtube的通知,此影片被內容擁有者或被Viacome公司線上授權者依據Youtube的過濾程序辨識並阻止。大約在6月30日,澳洲墨爾本解放音樂(Liberation Music)公司也依據數位千禧年法案(DMCA),對Youtube提出了移除通知要求移除影片,因為侵害解放音樂的著作權。在6月30日,Youtube以電子郵件通知萊斯格影片已經被移除,萊斯格向Youtube提出反通知,Youtube轉發給解放音樂,解放音樂反過來威脅萊斯格,如果他不撤回反訴,將在麻塞諸塞州法院起訴他。 美國維護科技時代人權與自由的電子先鋒基金會(Electronic Frontier Foundation, EFF)代表萊斯格辯稱,使用剪輯的問題,特別是內容是一個有關文化和網路的公開演講,是被允許在合理使用的原則下,因此,並不侵害被告的著作權。萊斯格使用的著作權是最小範圍且非基於商業使用目的,也從娛樂改為教育目的。演講的影片並不造成任何市場的損害。
日本提出2020年創新願景的期中建言,主張應自未來需求中發掘創新方向日本經濟產業省所屬「研究開發與創新附屬委員會」於2020年5月29日統整了有關2020年創新願景的期中建言並作成報告。本次的願景建言,係著眼於日本於IT等領域無法推動新興產業的現狀,且在原本具有競爭優勢的領域上,又因新興國家崛起導致實質獲益降低,加之新型冠狀病毒疫情使經濟活動停滯等結構性變化,產生全球性的典範轉移等問題。故認為應自長遠觀點出發,視「從未來需求中發掘創新價值」的途徑為創新關鍵,化危機為轉機,並同步觀察國內外的動向,針對企業、大學、政府各界應採取的行動,綜整出2020年的期中建言。 本次期中建言以產業為核心,主要包含以下幾個面向:(1)政策:例如,為積極參與新創事業的企業規劃認證制度;透過修正產學合作指引、簡化〈技術研究組合(為成員針對產業技術,提供人力、資金或設備進行共同研究,並為成果管理運用,且具法人格的非營利組織型態)〉設立與經營程序、擇定地區開放式創新據點等手段深化與落實開放式創新;以「創造社會問題解決方案」與「保護關鍵技術」的研發活動為重心,鬆綁相關管制,並調整計畫管理方式等以協助技術投入市場應用;以2025年與2050年為期,就次世代運算(computing)技術、生化、材料與能源領域提出科技與產業發展的願景;藉由改善人才制度、數位轉型等方式,強化企業研發能量;(2)「從未來需求中發掘創新價值」概念:現行研發與導向商品化的模式,主要以既有的技術、設備等資源為基底,進行線性且單向的創新研發,重視短期收益與效率化,使成果應用未能貼近社會的實際需要,故未來應在此種模式之外,另從創造社會議題解決方案與切合未來需求的觀點出發,結合既有技術資源來擬定長期性的研發創新戰略並加以實踐;(3)產官學研各界角色定位與任務:大學與國立研發法人應強化其研發成果之商轉合作,調整課程內容以削減知識與人才產出不符合社會議題需要的問題;企業的創新經營模式,則應透過ISO56002創新治理系統標準、日本企業價值創造治理行動指針(日本企業における価値創造 マネジメントに関する行動指針)等標準實踐,擴大開放式創新的應用;政府則應採取調整稅制、建置活動據點等方式,建構並提供有利於開放式創新的環境,並針對產業發展願景中的關鍵領域(如感測器等AI應用關聯技術、後摩爾時代(post moore's law)運算技術、生化技術、材料技術、環境與能源技術等)進行投資。
世界衛生組織發布人工智慧於健康領域之監管考量因素文件,期能協助各國有效監管健康領域之人工智慧世界衛生組織(World Health Organization, WHO)於2023年10月19日發布「人工智慧於健康領域之監管考量因素」(Regulatory considerations on artificial intelligence for health)文件,旨在協助各國有效監管健康領域之人工智慧,發揮其潛力同時最大限度地降低風險。本文件以下列六個領域概述健康人工智慧之監管考量因素: (1)文件化與透明度(Documentation and transparency) 開發者應預先規範(pre-specifying)以及明確記錄人工智慧系統(以下簡稱AI系統)之預期醫療目的與開發過程,如AI系統所欲解決之問題,以及資料集之選擇與利用、參考標準、參數、指標、於各開發階段與原始計畫之偏離及更新等事項,並建議以基於風險之方法(Risk-based approach),根據重要性之比例決定文件化之程度、以及AI系統之開發與確效紀錄之保持。 (2)風險管理與AI系統開發生命週期方法(Risk management and AI systems development lifecycle approaches) 開發者應在AI系統生命之所有階段,考慮整體產品生命週期方法(total product lifecycle approach),包括上市前開發管理、上市後監督與變更管理。此外,須考慮採用風險管理方法(risk management approach)來解決與AI系統相關之風險,如網路安全威脅與漏洞(vulnerabilities)、擬合不足(underfitting)、演算法偏差等。 (3)預期用途、分析及臨床確效(Intended use, and analytical and clinical validation) 開發者應考慮提供AI系統預期用途之透明化紀錄,將用於建構AI系統之訓練資料集組成(training dataset composition)之詳細資訊(包括大小、設定與族群、輸入與輸出資料及人口組成等)提供給使用者。此外,可考慮透過一獨立資料集(independent dataset)之外部分析確效(external analytical validation),展示訓練與測試資料以外之效能,並考慮將風險作為臨床確效之分級要求。最後,於AI系統之上市後監督與市場監督階段,可考慮進行一段期間密集之部署後監督(post-deployment monitoring)。 (4)資料品質(Data quality) 開發者應確認可用資料(available data)之品質,是否已足以支援AI系統之開發,且開發者應對AI系統進行嚴格之預發布評估(pre-release evaluations),以確保其不會放大訓練資料、演算法或系統設計其他元素中之偏差與錯誤等問題,且利害關係人還應考慮減輕與健康照護資料有關之品質問題與風險,並繼續努力創建資料生態系統,以促進優質資料來源之共享。 (5)隱私與資料保護(Privacy and data protection) 開發者於AI系統之設計與部署過程中,應考慮隱私與資料保護問題,並留意不同法規之適用範圍及差異,且於開發過程之早期,開發者即應充分瞭解適用之資料保護法規與隱私法規,並應確保開發過程符合或超過相關法規要求。 (6)參與及協作(Engagement and collaboration) 開發者於制定人工智慧創新與部署路線圖之期間,需考慮開發可近用且具有充足資訊之平台,以於適合與適當情況下促進利害關係人間之參與及協作;為加速人工智慧領域實務作法之進化,透過參與及協作來簡化人工智慧監管之監督流程即有必要。