美國高端家居家飾用品零售商Williams-Sonoma於美國加州北區聯邦地方法院指控電商巨頭Amazon企圖誤導消費者,使消費者認為Amazon是Williams-Sonoma授權的經銷商。
2018年12月14日Williams-Sonoma向法院提起了智財侵權等訴,主張Amazon犯有下列行為,並請求損害賠償及禁制令:
Williams-Sonoma指出就商標部分,Amazon未經授權,在其網站設立一Williams-Sonoma銷售網頁,並在廣告及該網頁中使用未經授權的Williams-Sonoma商標,且未標示清楚網頁中的商品並非直接由Williams-Sonoma提供;甚至於Amazon的搜尋引擎廣告及電子郵件廣告中誤導消費者,使消費者認為可以在Amazon網站上買到Williams-Sonoma授權的商品。
Amazon於今(2019)年2月提出動議主張該案與商標相關之部分應予駁回,辯稱其僅是提供一個平台,使在其他地方購買的Williams-Sonoma產品可以轉售給消費者,適用第一次銷售原則。但該地院法官表示:「就整體而言Amazon不僅是轉售Williams-Sonoma的產品,而是塑造錯誤的印象讓人誤以為在Amazon網站的這些銷售是經過授權,使一個合理謹慎的消費者(reasonably prudent consumer)會產生誤認混淆。」,因此裁定駁回被告Amazon提出的動議,本案將會進入法院審判。
Williams-Sonoma提出的訴訟案其實也是Amazon發展自有品牌衍生的抄襲問題以及與其他大型品牌商緊張關係的展現。Amazon扮演著既是合作夥伴也是競爭者的角色,使得一些大型品牌商陷入困境,若不在Amazon網站銷售,產品很有可能會銷售不佳,但若在Amazon網站銷售,則Amazon會蒐集銷售產品的資料並且製造類似但較便宜的自有品牌產品銷售。Amazon此種飽受爭議的營運模式所牽扯的智財爭議仍有待後續追蹤 。
圖片來源:COURT DOCUMENTS
「本文同步刊登於TIPS網站(https://www.tips.org.tw)」
英國發布《AI保證介紹》指引,藉由落實AI保證以降低AI系統使用風險 資訊工業策進會科技法律研究所 2024年03月11日 人工智慧(AI)被稱作是第四次工業革命的核心,對於人們的生活形式和產業發展影響甚鉅。各國近年將AI列為重點發展的項目,陸續推動相關發展政策與規範,如歐盟《人工智慧法》(Artificial Intelligence Act, AI Act)、美國拜登總統簽署的第14110號行政命令「安全可靠且值得信賴的人工智慧開發暨使用」(Executive Order on the Safe, Secure, and Trustworthy Development and Use of Artificial Intelligence)、英國「支持創新的人工智慧監管政策白皮書」(A Pro-innovation Approach to AI Regulation)(下稱AI政策白皮書)等,各國期望發展新興技術的同時,亦能確保AI使用的安全性與公平性。 壹、事件摘要 英國科學、創新與技術部(Department for Science, Innovation and Technology,DSIT)於2024年2月12日發布《AI保證介紹》(Introduction to AI assurance)指引(下稱AI保證指引),AI保證係用於評測AI系統風險與可信度的措施,於該指引說明實施AI保證之範圍、原則與步驟,目的係為讓主管機關藉由落實AI保證,以降低AI系統使用之風險,並期望提高公眾對AI的信任。 AI保證指引係基於英國政府2023年3月發布之AI政策白皮書提出的五項跨部會AI原則所制定,五項原則分別為:安全、資安與穩健性(Safety, Security and Robustness)、適當的透明性與可解釋性(Appropriate Transparency and Explainability)、公平性(Fairness)、問責與治理(Accountability and Governance)以及可挑戰性 與補救措施(Contestability and Redress)。 貳、重點說明 AI保證指引內容包含:AI保證之適用範圍、AI保證的三大原則、執行AI保證的六項措施、評測標準以及建構AI保證的五個步驟,以下將重點介紹上開所列之規範內容: 一、AI保證之適用範圍: (一)、訓練資料(Training data):係指研發階段用於訓練AI的資料。 (二)、AI模型(AI models):係指模型會透過輸入的資料來學習某些指令與功能,以幫助建構模模型分析、解釋、預測或制定決策的能力,例如GPT-4。,如GPT-4。 (三)、AI系統(AI systems):係利用AI模型幫助、解決問題的產品、工具、應用程式或設備的系統,可包含單一模型或多個模型於一個系統中。例如ChatGPT為一個AI系統,其使用的AI模型為GPT-4。 (四)、廣泛的AI使用(Broader operational context):係指AI系統於更為廣泛的領域或主管機關中部署、使用的情形。 二、AI保證的三大原則:鑒於AI系統的複雜性,須建立AI保證措施的原則與方法,以使其有效執行。 (一)、衡量(Measure):收集AI系統運行的相關統計資料,包含AI系統於不同環境中的性能、功能及潛在風險影響的資訊;以及存取與AI系統設計、管理的相關文件,以確保AI保證的有效執行。 (二)、評測(Evaluate):根據監管指引或國際標準,評測AI系統的風險與影響,找出AI系統的問題與漏洞。 (三)、溝通(Communicate):建立溝通機制,以確保主管機關間之交流,包含調查報告、AI系統的相關資料,以及與公眾的意見徵集,並將上開資訊作為主管機關監理決策之參考依據。 三、AI保證的六項措施:主管機關可依循以下措施評測、衡量AI系統的性能與安全性,以及其是否符合法律規範。 (一)、風險評估(Risk assessment):評測AI系統於研發與部署時的風險,包含偏見、資料保護和隱私風險、使用AI技術的風險,以及是否影響主管機關聲譽等問題。 (二)、演算法-影響評估(Algorithmic-impact assessment):用於預測AI系統、產品對於環境、人權、資料保護或其他結果更廣泛的影響。 (三)、偏差審計(Bias audit):用於評估演算法系統的輸入和輸出,以評估輸入的資料、決策系統、指令或產出結果是否具有不公平偏差。 (四)、合規性審計(Compliance audit):用於審查政策、法律及相關規定之遵循情形。 (五)、合規性評估(Conformity assessment):用於評估AI系統或產品上市前的性能、安全性與風險。 (六)、型式驗證(Formal verification):係指使用數學方法驗證AI系統是否滿足技術標準。 四、評測標準:以國際標準為基礎,建立、制定AI保證的共識與評測標準,評測標準應包含以下事項: (一)、基本原則與術語(Foundational and terminological):提供共享的詞彙、術語、描述與定義,以建立各界對AI之共識。 (二)、介面與架構(Interface and architecture):定義系統之通用協調標準、格式,如互通性、基礎架構、資料管理之標準等。 (三)、衡量與測試方式(Measurement and test methods):提供評測AI系統的方法與標準,如資安標準、安全性。 (四)、流程、管理與治理(Process, management, and governance):制定明確之流程、規章與管理辦法等。 (五)、產品及性能要求(Product and performance requirements):設定具體的技術標準,確保AI產品與服務係符合規範,並透過設立安全與性能標準,以達到保護消費者與使用者之目標。 五、建構AI保證的步驟(Steps to build AI assurance) (一)、考量現有的法律規範(Consider existing regulations):英國目前雖尚未針對AI制定的法律,但於AI研發、部署時仍會涉及相關法律,如英國《2018年資料保護法》(Data Protection Act 2018)等,故執行AI保證時應遵循、考量現有之法律規範。 (二)、提升主管機關的知識技能(Upskill within your organisation):主管機關應積極了解AI系統的相關知識,並預測該機關未來業務的需求。 (三)、檢視內部風險管理問題(Review internal governance and risk management):須適時的檢視主管機關內部的管理制度,機關於執行AI保證應以內部管理制度為基礎。 (四)、尋求新的監管指引(Look out for new regulatory guidance):未來主管機關將制定具體的行業指引,並規範各領域實踐AI的原則與監管措施。 (五)、考量並參與AI標準化(Consider involvement in AI standardisation):私人企業或主管機關應一同參與AI標準化的制定與協議,尤其中小企業,可與國際標準機構合作,並參訪AI標準中心(AI Standards Hubs),以取得、實施AI標準化的相關資訊與支援。 參、事件評析 AI保證指引係基於英國於2023年發布AI政策白皮書的五項跨部會原則所制定,冀望於主管機關落實AI保證,以降低AI系統使用之風險。AI保證係透過蒐集AI系統運行的相關資料,並根據國際標準與監管指引所制定之標準,以評測AI系統的安全性與其使用之相關影響風險。 隨著AI的快速進步及應用範疇持續擴大,於各領域皆日益重要,未來各國的不同領域之主管機關亦會持續制定、推出負責領域之AI相關政策框架與指引,引導各領域AI的開發、使用與佈署者能安全的使用AI。此外,應持續關注國際間推出的政策、指引或指引等,研析國際組織與各國的標準規範,借鏡國際間之推動作法,逐步建立我國的AI相關制度與規範,帶動我國智慧科技產業的穩定發展外,同時孕育AI新興產應用的發展並打造可信賴、安全的AI使用環境。
美國聯邦通訊委員會新通過的隱私規範這是客戶的資訊,該資訊如何被使用應為客戶的選擇。」於此一理念下,美國聯邦通訊委員會(Federal Communication Commission,FCC)於2016年10月27日通過了寬頻客戶隱私規定(Broadband Consumer Privacy Rules),該規定要求寬頻網路服務提供者(broadband Internet Service Providers,ISPs)應保護其客戶之隱私,該新通過的隱私規範非禁止使用及分享客戶的資訊,而係給予客戶有更多的選擇去決定自身的資訊該如何被分享及使用。以下簡介規範內容: 一、規範對象:寬頻網路服務提供者及其他電信營運商,例如Comcast、Verizon、AT&T等。規範對象未包含聯邦貿易委員會(Federal Trade Commission,FTC)所管轄的隱私保護措施下的網站或其他邊緣服務商(edge service),例如Google、Facebook、Amazon等。亦未規範寬頻網路服務提供者營運的社交媒體網站或政府監管、加密,執法等問題。 二、 主要規範內容:將ISP所蒐集得使用及分享的資訊分為三類,建立客戶同意要件,分類如下。 (一)敏感性資訊須事前取得客戶肯定地選擇同意加入(opt-in),才得為使用及分享。敏感性資訊包含精確的地理位置、金融資訊、健康資訊、孩童資訊、社會安全碼、網站瀏覽紀錄、app使用紀錄及通訊內容。 (二)非敏感性資訊,例如電子郵件地址或服務層資訊,得使用及分享,惟當客戶選擇退出(opt-out)則不得使用及分享。 (三)同意要件之例外。除了在建立客戶與ISP關係外,針對特定目的將會被推定為已取得客戶同意,包含寬頻服務之提供或針對服 三、 其他重要規範內容:清楚告知客戶收集的資訊、將如何使用、向誰分享;實施合理的資料安全準則;保密性違反之通知。 然而針對FCC是否具有相關管制權限,質疑聲浪仍存於本次規範之通過。亦有認為該規範與FTC的管制同時運行將形成疊床架屋,造成社會大眾之混淆。並且該規範未能真實反映網路生態,未將網路公司或社交網站公司列入管制對象,無法真正保護客戶隱私。
英國通訊管理局決定擴張防止「不正當銷售」(mis-selling)的規定鑑於頻寬市場以及電信市場的競爭愈趨炙熱,不肖資通訊業者對於弱勢消費者,透過詐騙或其他不適當銷售手法而獲利的案例也層出不窮。爰此,英國通訊管理局(Office of Communication/ Ofcom)在2007年2月8日,決定擴張防止固網電信業者對消費者「不正當銷售」(mis-selling)的規範內容(General Condition)。 「不正當銷售」指的是電信公司或其雇員,利用不受歡迎或者非法的銷售產品技巧所從事的相關市場活動。其中最嚴重的銷售方式,又以「砰一聲」(slamming)的銷售行為,最令人詬病。因為該銷售行為是在未經消費者明示同意、或者未使其獲得足夠知識與資訊下,逕自將提供的服務轉換到另一家公司。例如:轉換服務提供者,但並未通知你;通知轉換服務提供者,但未經你同意;所簽約的服務與提供的服務不盡相同;銷售人利用使你倍感壓力的方式來銷售服務等等,均屬誤賣行為。 此次的規則擴張,在規範對象上也會納入那些使用用戶迴路的服務提供者。Ofcom認為在日益激勵的市場競爭下,這些擴張規則有助於消費者權益,並能保護他們免受不適當的銷售活動干擾,更可確保消費者追求更好消費標的市場信心。
歐洲專利局發布人工智慧與機器學習專利審查指南正式生效歐洲專利局(European Patent Office, 下稱EPO)於2018年11月1日發佈新版專利審查指南已正式生效。此次新版的焦點為Part G, Chapter II, 3.3.1關於人工智慧(Artificial Intelligence, AI)與機器學習(Machine Learning, ML)的可專利性審查細則。 在新版審查指南Part G, Chapter II, 3.3中指出數學方法本身為法定不予專利事項,然而人工智慧和機器學習是利用運算模型和演算法來進行分類、聚類、迴歸、降維等發明,例如:神經網路、遺傳演算法、支援向量機(Support Vector Machines, SVM)、K-Means演算法、核迴歸和判別分析,不論它們是否能夠藉由數據加以訓練,此類運算模型和演算法本身,因具有抽象的數學性質而不具專利適格性。 其中,EPO亦針對人工智慧和機器學習相關應用舉例下列特殊情形,說明可否具備發明技術特徵: (一)可能具技術性 在心臟監測儀器運用神經網路辨別異常心跳,此種技術為具有技術貢獻。 基於低階特徵(例如:影像邊緣、像素數值)的數位影像、影片、音頻或語言訊號分類,屬於分類演算法的技術應用。 (二)可能不具技術性 根據文字內容進行分類,本身不具技術目的,而僅是語言學的目的(T 1358/09) 對抽象數據或電信網路數據紀錄進行分類,但未說明所產生分類的技術用途,亦被認定本身不具技術目的,即使該分類演算法的數據價值高(例如:穩健性)(T 1784/06)。 在新版審查指南中亦指出,當分類方法用於技術目的,其產生之訓練集(training set)和訓練分類器(training the classifier)的步驟,則能被視為發明的技術特徵。 近年來,人工智慧技術的應用分佈在我們的生活中,無論是自駕車、新藥開發、語音辨識、醫療診斷等,隨著人工智慧和機器學習技術快速發展,新版的審查指南將為此技術訂定可專利性標準,EPO未來要如何評判人工智慧和機器學習相關技術,將可透過申請案之審查結果持續進行關注。 「本文同步刊登於TIPS網站(https://www.tips.org.tw )」