日本委託研究開發之智慧財產治理運用指引

  委託研究開發之智慧財產治理運用指引(委託研究開発における知的財産マネジメントに関する運用ガイドライン,以下簡稱委託研發智財運用指引)為日本經濟產業省制定並於2015年5月15日公布,用於規範該省、或該省所轄獨立行政法人委外執行技術研發計畫而產出的各項智慧財產權之管理運用事宜。

  日本於產業技術力強化法第19條納入拜杜法(Bayh-Dole Act)的意旨,建立了政府資助研發所生的智財權成果歸屬受託單位的原則,但同時為促進研發成果的第三人商業化利用,落實國家資助技術研發成果獲得充分運用以達成國家財富最大化的政策方針,因而作成該指引。

  委託研發智財運用指引以委託機關和受託單位為規範對象,首先揭示了研發成果商業化利用的重要性,並以此為核心思維,賦予委託機關須就個別委外研發計畫,在計畫開始前訂定計畫智財權管理方針,並向潛在計畫參加者提示的義務,同時,委託機關須確保委託契約中包含智財權等成果管理運用之約款,例如針對成果有無適用日本拜杜法規定、受託單位承諾在相當期間內未妥善運用成果時開放第三人利用等;另一方面,受託單位則有義務就計畫設置智財營運委員會,負責在計畫執行期間處理智財權管理事宜。

本文為「經濟部產業技術司科技專案成果」

你可能會想參加
※ 日本委託研究開發之智慧財產治理運用指引, 資訊工業策進會科技法律研究所, https://stli.iii.org.tw/article-detail.aspx?d=8237&no=67&tp=5 (最後瀏覽日:2026/01/01)
引註此篇文章
你可能還會想看
美國FTC通過「禁止企業簽訂競業禁止契約」的最終規定

美國聯邦貿易委員會(下稱FTC)於2024年4月23日通過「禁止企業簽訂競業禁止契約」最終版本的規定(以下稱「最終規定」) ,FTC認為「簽訂或執行競業禁止契約」違反《聯邦貿易委員會法》(Federal Trade Commission Act)第5條之防止不公平競爭之違法手段之規定。最終規定所禁止簽訂競業禁止契約的對象廣泛,包含獨立承包商、為營利企業工作的員工,並將可能取代其他規範競業禁止契約效力之州法。不過,尚有部分情形將排除最終規定的適用,如: (1)公司與高階主管的既有競業禁止契約仍屬有效,而高階主管被定義為「年收入超過 151,164 美元(約新臺幣4,927,492元)且擔任決策職位」的員工,如總裁、首席執行長或其他擁有企業重大決策權的職位。 (2)允許出於善意收購企業的雙方簽訂競業禁止契約。 (3)因FTC對於某些產業無監管權,因此該等產業不適用於禁止簽訂競業禁止契約的最終規定,如非營利組織、銀行、保險公司以及航空公司。 FTC指出最終規定於美國聯邦公報上公布120天(約4個月)後生效,並要求現已簽訂競業禁止契約之雇主負有通知義務,雇主須透過數位(電子郵件或簡訊)或紙本方式,明確地通知現任、前員工,其既有的競業禁止契約即將失效。 但美國商會(U.S. Chamber of Commerce)已聲明表示該最終規定有超出FTC管轄範圍之疑慮,故後續可否執行最終規定,仍有待密切關注。 為因應FTC大範圍禁止簽訂競業禁止契約之法制方向,建議公司可參考資策會科法所發布之「營業秘密保護管理規範」以系統性方式檢視不同面向的既有管理作法,如人員面、內容面等,以落實對於營業秘密的保護。 1.關於文件的管理建議 先盤點紙本及數位機密文件;再設定文件之接觸權限。 2.關於人員的管理建議 留意人員的智財教育訓練;人員的保密或智財權歸屬契約,確保契約約定已納入公司想保護的機密資訊,比如客戶或供應商名單及聯絡資訊、產品規格、製程等;以及離職管理。 本文同步刊登於TIPS網站(https://www.tips.org.tw)。

國際貨幣組織呼籲各國共同擬定監管加密貨幣之框架

  加密貨幣經濟襲捲全球,國際貨幣組織(IMF)總裁Christine Lagarde於官方網站發表對加密貨幣經濟可能涉及之風險及未來各界應如何共同應對之看法;認為加密貨幣有無限發展之潛力,其所應用之技術不僅提升金融產業發展,更為其他領域注入創新技術,惟發展之同時,潛在不法風險逐漸浮上檯面,加密貨幣不受中央銀行監管,並因其匿名性而容易成為洗錢、資恐的全新金融犯罪工具;另外,全球加密貨幣交易活動越發頻繁,交易價格的極端波動性,以及與傳統金融體系之間的關聯不明確,皆可能危害全球金融之穩定性。   Christine Lagarde認為加密貨幣交易之監管,與監管傳統金融所制定之政策並無二致,皆應以「確保金融穩定性和保護消費者」為首要政策,因此,提出幾個應對方向: 將加密貨幣創新技術用於監管行為技術中 (1)分散式帳本技術 (DLT)   為加快市場參與者與監管機構之間的訊息共享,確保用戶交易安全,可將此技術用來建立註冊標準,驗證客戶資訊及數位簽章;各政府機關亦可利用此技術所獲得之相關數據減少逃漏稅現象。 (2)生物辨識、人工智慧與加密技術   將生物辨識、人工智慧與加密等技術來強化數位安全,及時辨識可疑交易行為,有效抑止非法交易。 全球應共同發展出監管框架,跨國合作打擊不法   有鑑於加密貨幣的流通是全球性的,全球應共同發展出監管框架,2018年G20高峰會中加密貨幣也納入討論議題,藉由凝聚國際間共識,避免創新科技淪為犯罪工具。   面對加密貨幣價格的波動性,各界有不同解讀,有認為這只是一時狂熱所造成,終將泡沫化;亦有認為就如同物聯網發展初期革命一般,加密貨幣將破壞整個金融體系,取代現有的法定貨幣;惟Christine Lagarde表示事實應該是介於這兩個極端想法之間,各界不應片面否定加密貨幣,應採包容之看法迎接這項新科技,更應正視其潛在之危險。   國內現已有多家虛擬貨幣交易平台實際運營,為保護消費者權益,避免國內虛擬交易平台淪為洗錢、資恐行動之犯罪溫床,日前法務部已邀集金管會、內政部、央行、警政署、調查局等單位進行跨部會協商,擬於收集各界意見後,修訂相關規範,以利我國對於虛擬貨幣監管之政策方向與範圍能符合各方期待。

德國聯邦資訊技術,電信和新媒體協會針對AI及自動決策技術利用提出建議指南

  德國聯邦資訊技術,電信和新媒體協會於2018年2月6日在更安全的網路研討會中針對利用人工智慧及自動決策技術利用提出建議指南(Empfehlungen für den verantwortlichen Einsatz von KI und automatisierten Entscheidungen),旨在提升企業數位化與社會責任,並提升消費者權益保護。 本份指南提出六項建議: 促進企業內部及外部訂定相關準則 例如規定公司在利用演算法和AI時,必須將影響評估列入開發流程,並列為公司應遵守的道德倫理守則,以確保開發的產品或服務符合公平及道德。 提升透明度 使用者如有興趣了解演算法及其含義,企業應協助調查並了解使用者想獲知的訊息,並透過相關訊息管道提升產品及服務透明度。因此,企業應努力使演算法及其操作和含義能夠被使用者理解。此亦涉及即將實施的歐盟一般資料保護規則中的透明度義務。在機器學習或深度學習情況下,可能會增加理解性和可追溯性難度,但有助於分析流程並使其更接近人類理解的方法在科學和商業實踐中,應特別關注並進一步討論。另外,透過教育及使用說明協助及控制功能,教導消費者係建立雙方信任的重要手段。企業應在第一線中說明產品或服務中使用的手段(演算法,機器學習,AI)。除了解釋使用那些技術來改進產品和服務外,應一併解釋如何從技術控制過程中獲得相關知識以及提供那些後援支持。另外,例如透過幫助頁面,儀表板或部落格,解釋發生什麼以及如何做出某些影響深遠的自動化決策,使用戶更了解有關使用自動決策相關訊息。因此建議企業採取強制有效以建立信任的措施,使用戶理解是否及如何使用相關演算法,此可能包括使用自動化決策,使用特定資料組和使用技術的目的,亦即使用戶對演算法,機器學習或AI支持的決策有基本的了解。 為全體利益使用相關技術 人工智慧等新技術之重要性不應被低估,目前在生活和工業等眾多領域皆有廣泛應用。對於個人和集體而言,將可帶來巨大的利益,因此應該充分利用。例如,人工智慧可降低語言障礙,幫助行動不便的人可更加獨立自主生活,改善醫療診斷,提升能源供應效率,甚至是交通規劃和搜索停車位,都只是人工智慧偉大且已被使用的案例。為促進技術發展,應公平地利用其優勢並預留商業應用模式的空間,同時充分解決涉及的具體風險。產業特定的解決方案十分重要,但應兼顧受影響者的利益,並與廣大公眾利益找出妥協平衡點,且應排除不適當的歧視。建議在使用決策支持技術時,應事先檢查相關後果並與其利益比較。例如,可以在資料保護影響評估的框架進行。作為道德準則的一部分,必須確保演算法盡可能量準確地預測結果。 開發安全的資料基礎 資料係人工智慧支援決策的基礎。與人為決策者相同,資料不完整或錯誤,將導致做出錯誤的決定。因此決策系統的可靠性仍取決資料的準確性。但資料質量和資料來源始終不能追溯到源頭,如果可能的話,只有匯總或非個人資料可用於分析或分類用戶群組。因此,確切細節不可被使用或揭露。因此建議企業應考慮要使用的資料、資料的類別和在使用AI系統前仔細檢查資料使用情況,特別是在自我學習系統中資料引入的標準,並根據錯誤來源進行檢查,且儘可能全面記錄,針對個人資料部分更應謹慎處理。 解決機器偏差問題 應重視並解決所謂機器偏差和演算法選擇和模型建立領域的相關問題。解釋演算法,機器學習或AI在基層資料選擇和資料庫時所產生決策偏見相當重要,在開發預期用途的演算法時必須納入考量,對員工應針對道德影響進行培訓,並使用代表性紀錄來創建可以識別和最小化偏差的方法。企業並應該提高員工的敏感度並培訓如何解決並減少機器偏見問題,並特別注意資料饋送,以及開發用於檢測模式的內、外部測試流程。 適合個別領域的具體措施和文件 在特別需要負責的決策過程,例如在車輛的自動控制或醫療診斷中,應設計成由責任主體保留最終的決策權力,直到AI的控制品質已達到或高於所有參與者水平。對類人工智慧的信任,並非透過對方法的無條件追踪來實現,而是經過仔細測試,學習和記錄來實現

中國大陸國務院印發關於實施《促進科技成果轉化法》之規定

  中國大陸於2015年8月29日修改了其《促進科技成果轉化法》,為了該法的實施,中國大陸國務院於今年2月17日的常務會議中,即發表了其對於鼓勵研究機構及大專院校之科技研發成果運用的相關措施;而針對這些措施,中國大陸國務院於同月26日制定了相關的具體規定,並在3月2日時發布,並行文於各相關機關。   該規定分作16點,主要分三個大方向,包括促進研究機構及大專院校的科技研發成果轉移於民間企業、鼓勵科技研發人員發展創新技術以及創業活動,與科技研發環境的營造等等。   具體而言,其主要措施包括允許研發機構得自主決定其科技研發成果的運用,原則上不需要向政府申請核准或報備、其運用後的收入不需繳交國庫,得全部留於研發機構內,用於對研究人員之獎勵及機構內科技研發之用、其並對該收入用於對研究人員獎勵之比例下限作出明文規定、允許國立研發機構及大專院校之研究人員在一定條件下得保留原職位在一定期間內至民間企業兼職,或進行創業活動,以從事科技研發成果的運用,以及對研發機構的考核標準應納入對機構之科技研發成果及運用的評鑑等等。

TOP