「日本農業數據協作平台」(簡稱WAGRI)於2017年內閣府計畫的支持下,委由慶應義塾大學建立,該平台具備農業數據相容、數據共有與數據提供三大機能,日本IT企業NTT、富士通、農機大廠久保田、洋馬等均已加入WAGRI試營使用行列。今(2019)年該平台將移轉予國立研究開發法人農業食品產業技術總合研究機構(下簡稱農研機構),正式開始進入商業模式營運。欲利用WAGRI之機關除須向WAGRI協議會(由農業法人、農機製造商、ICT供應商、學研機構組成,以提出建議改善、普及WAGRI為其立會宗旨)遞交「入會申請書」外,亦須向農研機構遞交「利用規約」、「數據提供利用規約」與「規約同意書兼利用申請書」。
自主營運後,原先不收費方式已變更,欲利用WAGRI之機關依據以下兩種利用平台方式,須繳納不同的費用:
我國為發展智慧農業,智慧農業共通資訊平台有提供免費OPEN DATA介接功能,近年發展智慧農業之農企/機關團體,亦有建立平台作為內部蒐集、利用數據之用,例如弘昌碾米工廠建置水稻健康管理與倉儲資訊服務平臺,未來該類平台均有可能朝商業模式發展。WAGRI建立一套商業模式嘗試自主營運,後續將持續追蹤WAGRI營運狀況作為我國智慧農業平台之運作參考。
「本文同步刊登於TIPS網站(https://www.tips.org.tw)」
英國國會於2023年7月上旬通過《電子貿易文件法》(Electronic Trade Documents Act 2023, ETDA),經國王於7月20日正式批准,該法於2023年9月20日正式生效,未來英國的電子貿易文件將與紙本貿易文件具有相同效力。 一直以來,英國僅承認紙本貿易文件的法律上效力,因此英國企業在進行國際貿易的各環節上,必須處理上百頁的紙本文件,造成英國企業及其交易對象必須花費相當高的時間和金錢成本,不僅效率低且造成環境破壞,同時紙本文件也較難驗證其真實性。在數位轉型趨勢下,此類陳舊的法律早已不合時宜,因此美國、新加坡、德國等國家也正在進行類似立法,而英國是七大工業國組織(Group of Seven, G7)中第一個完成立法的國家。 該法正式施行後,可大幅降低英國企業的成本,提升國貿及融資的效率;根據英國政府估計,未來十年,該法將可為英國經濟創造11.4億英鎊的淨效益(net benefit),同時每年可減少10%以上的碳排放量,有助於落實ESG。更重要的是,相對於紙本,貿易文件的數位化,可提升安全性和透明性。 根據該法第2條第2項規定,電子貿易文件必須是由「可信賴系統」(reliable system)所產生,所謂「可信賴系統」必須具備以下特徵: 1.能清楚識別文件,與其他副本加以區分; 2.能防止文件遭到未經授權的修改; 3.確保任何時點僅有一人能對該文件行使控制權; 4.允許能夠對該文件行使控制之人,能向他人「證明」其控制權; 5.確保電子貿易文件移轉後,使前手立即喪失控制權。 此外,第2條第5項列出在判斷一個系統是否可信賴時,可考量的7點因素,其中第5點指出可考量該系統是否經獨立機構定期稽核(包含稽核頻率和範圍),以及第6點為該系統是否經監管機關進行任何可信賴性的評估。 雖然該法基於技術中立(technological neutrality),並未明定何種技術符合「可信賴系統」的要求。然而,起草該法的法律委員會(Law Commission of England and Wales, LCEW)於2022年3月的草案報告中花了相當大的篇幅說明「分散式帳本」(Distributed Ledger Technology, DLT)的技術,並認為DLT在透明性、安全性、不可竄改等面向有較好的表現,因此指出這是「目前」產生可信賴電子貿易文件的重要技術之一。英國政府表示,承認電子貿易文件的法律效力後,國際貿易各環節的參與者可以透過如DLT等技術,更有效地追踪相關紀錄,進而提高國際貿易的安全性和合規性。 本文同步刊登於TIPS網站(https://www.tips.org.tw)
美國法院擬修正《聯邦證據規則》以規範人工智慧生成內容之證據能力2025年5月2日,聯邦司法會議證據規則諮詢委員會(Judicial Conference’s Advisory Committee on Evidence Rules)以8比1投票結果通過一項提案,擬修正《聯邦證據規則》(Federal Rules of Evidence,FRE),釐清人工智慧(AI)生成內容於訴訟程序中之證據能力,以因應生成式AI技術在法律實務應用上日益普遍的趨勢。 由於現行《聯邦證據規則》僅於第702條中針對人類專家證人所提供的證據設有相關規定,對於AI生成內容的證據能力尚無明確規範,所以為了因應AI技術發展帶來的新興挑戰,《聯邦證據規則》修正草案(下稱「修正草案」)擬新增第707條「機器生成證據」(Machine-Generated Evidence),並擴張第901條「驗證或識別證據」(Authenticating or Identifying Evidence)的適用範圍。 本次增訂第707條,針對AI生成內容作為證據時,明確其可靠性評估標準,以避免出現分析錯誤、不準確、偏見或缺乏可解釋性(Explainability)等問題,進而強化法院審理時的證據審查基礎。本條規定,AI生成內容作為證據必須符合以下條件: 1. 該AI生成內容對於事實之認定具有實質助益; 2. AI系統於產出該內容時,係以充分且適當之事實或資料為輸入依據; 3. 該輸出結果能忠實反映其所依據之原理與方法,並證明此一應用於特定情境中具有可靠性。 本修正草案此次新增「AI生成內容」也必須合乎既有的證據驗證要件。原第901條a項原規定:「為符合證據之驗證或識別要求,提出證據者必須提供足以支持該證據確係其所聲稱之內容的佐證資料。」而修正草案擬於第901條b項新增「AI生成內容」一類,意即明文要求提出AI生成內容作為證據者,須提出足夠證據,以證明該內容具有真實性與可信度,方符合第901條a項驗證要件。 隨著AI於美國法院審理程序中的應用日益廣泛,如何在引入生成式AI的同時,於司法創新與證據可靠性之間取得平衡,將成為未來美國司法實務及法制發展中的重要課題,值得我國審慎觀察並參酌因應,作為制度調整與政策設計的參考。
美國國家創新與創業諮詢委員會發布透過創業提高競爭力美國創新策略報告, 敦促政府消除創業活動障礙,促進新創公司發展美國國家創新與創業諮詢委員會(National Advisory Council on Innovation and Entrepreneurship, NACIE)於2024年2月8日發布「透過創業提高競爭力:美國創新策略」(Competitiveness Through Entrepreneurship: A Strategy For U.S. Innovation)報告,其確定改善與協助美國創業精神之三大關鍵領域,並提出十項建議,敦促政府消除創業活動障礙,增加新創公司獲得人才、資金之機會。 NACIE由企業家、創新者、投資人、學者與經濟發展領導者組成。由商務部長責成其確定如何使美國繼續成為改變典範之創新來源、以及將創新推向市場之泉源。NACIE於此報告中所確認之三大關鍵領域與十項建議之內涵簡述如下: (1)關鍵領域1:發展未來產業(Growing the Industries of the Future) 美國雖於能源、自動化、人工智慧、量子科學與生物科技等創新領域取得商業上之成功,但對於產業創新仍存有四大威脅,包括國家機關間之協調、研發投資之持續減少、大學研發產品商業化受阻與境外製造之風險。 建議1: 成立國家創新委員會(National Innovation Council),由科學技術政策辦公室主任(Director of the Office of Science & Technology Policy)擔任主席,成員包括相關內閣秘書、國家科學基金會(NSF)主任、美國專利商標局(USPTO)局長與美國首席技術長(Chief Technology Officer, CTO),倡導全國創新與創業並協調相關聯邦政府活動。 建議2: 恢復與擴大國家投資,使創新登月計畫成為可能—大幅增加聯邦對關鍵技術之研發投資,使美國在未來成長產業中發揮領導作用。 建議3: 啟動國家創新加速器網路(National Innovation Accelerator Network, NIAN)—一個由加速器、輔導、投資計畫與創業支持組織組成之虛擬“網路中之網路”(“network of networks”),旨在大規模增強社會各方面之包容性創業能力。 建議4: 為聯邦資助之研究與開發提供智慧財產權激勵措施;制定政策與激勵措施,促進聯邦政府資助之創新廣泛傳播與商業化;並促進將聯邦資助創新進行國內製造。 建議5: 積極與創新者、企業家與資助者合作,確保其擁有足夠之智慧財產權與網路安全教育與資源來保護其之想法與業務,並接受培訓以能夠識別與防止外國公司或國家潛在之智慧財產權盜竊。 (2)關鍵領域2:獲取資本(Accessing Capital) 美國前七大上市公司全部皆由創投所支持,於1990至2020年間,相較於私部門之雇用率上升40%,同一時期由創投支持之公司雇用率成長達960%;美國創投規模亦居於全球之冠,甚至某些城市之創投規模已超過其他國家,如2021年紐約之創投規模即相當於印度全國之規模。惟美國創投之問題在於投資機會未能平等,如女性、有色人種、非都會區較難獲得創投投資。 建議6: 透過制定新聯邦計畫,擴大企業家之成長資金管道,以支持各地更多企業家,特別是通常未受足夠服務之企業家。 建議7: 透過擴大直接資助與基於激勵(incentive-based)之聯邦計畫,增加資金並為新興基金經理提供機會,以便於全國更多處皆能有更多具有各種人口背景與專業之投資人。 建議8: 向投資於研發、種子輪或A 輪融資新創公司、女性與少數族群擁有之新創公司、以及保護與授權智慧財產權之公司與個人提供年度稅收抵免與激勵措施。 (3)關鍵領域3:培養創業人才(Developing Entrepreneurial Talent) 人才對於創業生態系之完整建構至為重要,美國一半以上之10億美元公司由移民創辦,三分之二之獨角獸公司由移民創辦或共同創辦,這些公司之創辦人中有25%是國際學生。 建議9: 透過提供導師、支持服務資金以及幫助吸引與培養關鍵人才,全面支持新高潛力企業家,旨在增加美國新創公司之數量與影響力。 建議10: 有系統地提供支持創業之工具與資源,打破任何人、任何地方之障礙,為新創業企業做出貢獻,以便美國未來能更快地創新。
歐洲專利局發布人工智慧與機器學習專利審查指南正式生效歐洲專利局(European Patent Office, 下稱EPO)於2018年11月1日發佈新版專利審查指南已正式生效。此次新版的焦點為Part G, Chapter II, 3.3.1關於人工智慧(Artificial Intelligence, AI)與機器學習(Machine Learning, ML)的可專利性審查細則。 在新版審查指南Part G, Chapter II, 3.3中指出數學方法本身為法定不予專利事項,然而人工智慧和機器學習是利用運算模型和演算法來進行分類、聚類、迴歸、降維等發明,例如:神經網路、遺傳演算法、支援向量機(Support Vector Machines, SVM)、K-Means演算法、核迴歸和判別分析,不論它們是否能夠藉由數據加以訓練,此類運算模型和演算法本身,因具有抽象的數學性質而不具專利適格性。 其中,EPO亦針對人工智慧和機器學習相關應用舉例下列特殊情形,說明可否具備發明技術特徵: (一)可能具技術性 在心臟監測儀器運用神經網路辨別異常心跳,此種技術為具有技術貢獻。 基於低階特徵(例如:影像邊緣、像素數值)的數位影像、影片、音頻或語言訊號分類,屬於分類演算法的技術應用。 (二)可能不具技術性 根據文字內容進行分類,本身不具技術目的,而僅是語言學的目的(T 1358/09) 對抽象數據或電信網路數據紀錄進行分類,但未說明所產生分類的技術用途,亦被認定本身不具技術目的,即使該分類演算法的數據價值高(例如:穩健性)(T 1784/06)。 在新版審查指南中亦指出,當分類方法用於技術目的,其產生之訓練集(training set)和訓練分類器(training the classifier)的步驟,則能被視為發明的技術特徵。 近年來,人工智慧技術的應用分佈在我們的生活中,無論是自駕車、新藥開發、語音辨識、醫療診斷等,隨著人工智慧和機器學習技術快速發展,新版的審查指南將為此技術訂定可專利性標準,EPO未來要如何評判人工智慧和機器學習相關技術,將可透過申請案之審查結果持續進行關注。 「本文同步刊登於TIPS網站(https://www.tips.org.tw )」