美國5G科技加速方案(Facilitate America’s Superiority in 5G Technology,簡稱5G FAST Plan)是美國聯邦通訊委員會(Federal Communications Commission,簡稱FCC)為激勵5G投資創新、強化美國5G技術優勢,於2018年9月28日所提出的方案,著重在5G三大發展面向包括:投入更多頻譜進入市場、基礎建設及政策升級、更新監管法規等。其中,美國5G科技加速方案(5G FAST Plan)針對過時法令的現代化,共提出五點更新方向,促進美國人的數位機遇與挑戰。
一、 恢復網路自由:為鼓勵投資和創新,確保網路的開放自由。FCC通過《恢復網路自由命令》,廢除網路中立性。
二、 One Touch Make Ready: FCC更新網路設備安裝到公用電線桿的規則,降低成本並加快5G傳輸部署。
三、 加速智慧財產權轉型:FCC修訂規則促進企業投資5G網路與服務。
四、 商業數據服務:為激勵對現代光纖網路建設的投資,FCC更新高速專用服務規則並提高費率。
五、 供應鏈完整性:禁止購買會威脅美國5G通訊網路及通訊供應鏈完整性的設備與服務。
另一方面,2019年4月12日,FCC主席Ajit Pai前往白宮與總統會談時,再次強調美國必須贏得第五代行動通訊技術競賽,主要有兩個關鍵原因:首先是提升國家競爭力,透過開發並部署5G技術等高薪工作,提升美國經濟水平,進而超越其他競爭國家;再者,發展5G將徹底改變人類的生活方式,從精準農業、智慧交通再到遠端醫療網路,包含農村在內的所有美國民眾,都將受益於這場5G數位革命。 FCC擬定的美國5G科技加速方案(5G FAST Plan),未來發展重點聚焦如下:
一、 釋出5G頻譜以供商業使用:FCC已在2019年1月完成第一次的5G頻譜拍賣,並進行第二次及2019年12月10日第三次的5G頻譜拍賣,開放競標3400兆赫茲,將會是美國歷史上最大的頻譜競標。
二、 簡化5G無線基礎建設審查:5G運作必須依靠小型基地台(Small Cell),FCC透過更新無線通訊基礎設施政策,簡化聯邦與地方對於小型基地台部署審查,加速推動5G無線網路服務覆蓋範圍。
三、 積極鼓勵光纖部署:5G不僅是無線技術,要將5G應用在無人機飛行,還需要更強大的光纖網路傳輸流量。FCC近來致力於鬆綁嚴厲的監管規定,希能逐步增加更多的光纖部署地點。
此外,為鞏固美國在國際的5G競爭實力、部署國家未來的5G基礎建設,FCC預計建立一規模達204億美元的農村數位機會基金,將高速頻寬拓展至美國農村地區多達400萬戶家庭及中小企業,5G技術將為美國帶來更多的經濟機會。FCC表示,從國際條約談判到急需的監管改革,美國政府將以多種方式推展5G願景,提升國家經濟及產業競爭力,改善人民生活並尋求全新的生活模式,為此美國必須贏得第五代行動通訊技術競賽。
本文為「經濟部產業技術司科技專案成果」
澳洲政府在2009年12月15日對外公佈網路安全(cyber-safety)措施,包含: 1. 強制要求加裝ISP層級之網路分級過濾系統; 2. 給予提供家庭用戶額外過濾系統之ISP業者補貼; 3. 藉由澳洲通訊及媒體局(Australian Communications and Media Authority)及其他單位所建立之網路安全計畫,推動網路安全之教育和認知。 澳洲主管機關欲修法對於未依規定做出分級之網站及遭檢舉者,將會列入黑名單,封鎖其網路連線。並要求所有ISP業者必須封鎖所有含有不當內容(Refused Classification-rated material)之國外伺服器(servers),所謂內容不當包含,兒童性虐待、獸交、強制性交在內之性暴力、和過度詳細之犯罪行為或毒品使用。 該項立法若通過,澳洲將會成為民主國家中網路管制最嚴格之國家。 提出該法案之議員表示:「網路安全沒有萬無一失之保護方式,但是對於所有澳洲人,特別是孩童來說,遠離這些內容,是非常重要的。」 網路權益團體「澳洲電子先鋒」(Electronic Frontiers Australia)則質疑,「政府明知這樣的措施並無法幫助孩童,也不能幫助取締禁止該等內容。」其他網路使用者及情色網站業者,亦認為執法難以落實,部分合法網站可能反被封鎖,網路連線速度也可能受到影響。且網友常使用的點對點傳輸(P2P)或透過聊天室傳送檔案,均不在法案管制可及之處等。
通用人工智慧的透明揭露標準--歐盟通用人工智慧模型實踐準則「透明度 (Transparency)」章通用人工智慧的透明揭露標準--歐盟通用人工智慧模型實踐準則「透明度 (Transparency)」章 資訊工業策進會科技法律研究所 2025年08月06日 歐盟人工智慧辦公室(The European AI Office,以下簡稱AIO) 於2025年7月10日提出《人工智慧法案》(AI Act, 以下簡稱AIA法案)關於通用型人工智慧實作的準則[1] (Code of Practice for General-Purpose AI Models,以下簡稱「GPAI實踐準則」),並於其中「透明度 (Transparency)」章節[2],針對歐盟AIA法案第53條第1項(a)、(b)款要求GPAI模型的提供者必須準備並提供給下游的系統整合者 (integrator) 或部署者 (deployer) 足夠的資訊的義務,提出模型文件(Model Documentation)標準與格式,協助GPAI模型提供者制定並更新。 壹、事件摘要 歐盟為確保GPAI模型提供者遵循其AI法案下的義務,並使AIO能夠評估選擇依賴本守則以展現其AI法案義務合規性的通用人工智慧模型提供者之合規情況,提出GPAI實踐準則。當GPAI模型提供者有意將其模型整合至其AI系統的提供者(以下稱「下游提供者」)及應向AIO提供相關資訊,其應依透明度章節要求措施(詳下述)提出符合內容、項目要求的模型文件,並予公開揭露且確保已記錄資訊的品質、安全性及完整性 (integrity)。 由於GPAI模型提供者在AI價值鏈 (AI value chain) 中具有特殊角色和責任,其所提供的模型可能構成一系列下游AI系統的基礎,這些系統通常由需要充分了解模型及其能力的下游提供者提供,以便將此類模型整合至其產品中並履行其AIA法案下的義務。而相關資訊的提供目的,同時也在於讓AIO及國家主管機關履行其AI法案職責,特別是高風險AI的評估。 AIO指出完整填寫與定期更新模型文件,是履行AIA法案第53條義務的關鍵步驟。GPAI模型提供者應建立適當的內部程序,確保資訊的準確性、時效性及安全性。模型文件所含資訊的相關變更,包括同一模型的更新版本,同時保留模型文件的先前版本,期間至模型投放市場後10年結束。 貳、重點說明 一、制定並更新模型文件(措施1.1) 透明度 (Transparency)章節提供模型文件的標準表格,做為GPAI實踐準則透明度章節的核心工具,協助GPAI模型提供者有系統性的整理並提供AIA法案所要求的各項資訊。表格設計考量了不同利害關係人的資訊需求,確保在保護商業機密的同時,滿足監管透明度的要求。 前揭記錄資訊依其應提供對象不同,各欄位已有標示區分該欄資訊係用於AI辦公室 (AIO)、國家主管機關 (NCAs) 或下游提供者 (DPs)者。適用於下游提供者的資訊,GPAI模型提供者應主動提供(公開揭露),其他則於被請求時始須提供(予AIO或NCAs)。 除基本的文件最後更新日期與版本資訊外,應提供的資訊分為八大項,內容應包括: (一)、一般資訊General information 1.模型提供者法律名稱(Legal name) 2.模型名稱(Model name):模型的唯一識別碼(例如 Llama 3.1-405B),包括模型集合的識別碼(如適用),以及模型文件涵蓋之相關模型公開版本的名稱清單。 3.模型真實性(Model authenticity):提供明確的資訊例如安全雜湊或URL端點,來幫助使用者確認這個模型的來源 (Provenance)、是否真實性未被更動 (Authenticity)。 4.首次發布日(Release date)與首次投放歐盟市場的日期(Union market release date)。 5.模型依賴(Model dependencies):若模型是對一個或多個先前投放市場的GPAI模型進行修改或微調的結果,須列出該等模型的名稱(及相關版本,如有多個版本投放市場)。 (二)、模型屬性(Model properties) 1.Model architecture 模型架構:模型架構的一般描述,例如轉換器架構 (transformer architecture)。 2.Design specifications of the model 模型設計規格:模型主要設計規格的一般描述,包括理由及所作假設。 3.輸出/入的模式與其最大值(maximum size):說明係文字、影像、音訊或視訊模式與其最大的輸出/入的大小。 4.模型總參數量(model size)與其範圍(Parameter range):提供模模型參數總數,記錄至少兩個有效數字,例如 7.3*10^10 參數,並勾選參數(大小)所在範圍的選項,例如:☐>1T。 (三)、發佈途徑與授權方式(Methods of distribution and licenses) 1.發佈途徑Distribution channels:列舉在歐盟市場上使用模型的採用法,包括API、軟體套裝或開源倉庫。 2.授權條款License:附上授權條款鏈結或在要求時提供副本;說明授權類型如: 開放授權、限制性授權、專有授權;列出尚有提供哪些相關資源(如訓練資料、程式碼)與其存取方式、使用授權。 (四)、模型的使用(Use) 1.可接受的使用政策Acceptable Use Policy:附上可接受使用政策連結或副本或註明無政策。 2.預期用途或限制用途Intended uses:例如生產力提升、翻譯、創意內容生成、資料分析、資料視覺化、程式設計協助、排程、客戶支援、各種自然語言任務等或限制及/或禁止的用途。 3.可整合AI系統之類型Type and nature of AI systems:例如可能包括自主系統、對話助理、決策支援系統、創意AI系統、預測系統、網路安全、監控或人機協作。 4.模型整合技術方式Technical means for integration:例如使用說明、基礎設施、工具)的一般描述。 5.所需軟硬體資源Required hardware與software:使用模型所需任何軟硬體(包括版本)的描述,若不適用則填入「NA」。 (五)、訓練過程(Training process) 1.訓練過程設計規格(Design specifications of the training process):訓練過程所涉主要步驟或階段的一般描述,包括訓練方法論及技術、主要設計選擇、所作假設及模型設計最佳化目標,以及不同參數的相關性(如適用)。例如:「模型在人類偏好資料集上進行10個輪次的後訓練,以使模型與人類價值觀一致,並使其在回應使用者提示時更有用」。 2.設計決策理由(Decision rationale):如何及為何在模型訓練中做出關鍵設計選擇的描述。 (六)、用於訓練、測試及驗證的資料資訊(Information on the data used for training, testing, and validation) 1.資料類型樣態Data type/modality:勾選樣態包括文字、影像、音訊、視訊或說明有其他模態。 2.資料來源Data provenance:勾選來源包括網路爬蟲、從第三方取得的私人非公開資料集、使用者資料、公開資料集、透過其他方式收集的資料、非公開合成(Synthetic )資料等。 3.資料取得與選取方式(How data was obtained):取得及選擇訓練、測試及驗證資料使用方法的描述,包括用於註釋資料的方法及資源,以及用於生成合成資料的模型及方法。從第三方取得的資料,如果權利取得方式未在訓練資料公開摘要中披露,應描述該方式。 4.資料點數量Number of data points:說明訓練、測試及驗證資料的大小(資料點數量),連同資料點單位的定義(例如代幣或文件、影像、視訊小時或幀)。 5.資料範疇與特性(Scope and characteristics):指訓練、測試及驗證資料範圍及主要特徵的一般描述,如領域(例如醫療保健、科學、法律等)、地理(例如全球、限於特定區域等)、語言、模式涵蓋範圍。 6.資料清理處理方法(Data curation methodologies):指將獲取的資料轉換為模型訓練、測試及驗證資料所涉及的資料處理一般描述,如清理(例如過濾不相關內容如廣告)、資料擴增。 7.不當資料檢測措施(Measures for unsuitability):在資料獲取或處理中實施的任何方法描述(如有),以偵測考慮模型預期用途的不適當資料源,包括但不限於非法內容、兒童性虐待材料 (CSAM)、非同意親密影像 (NCII),以及導致非法處理的個人資料。 8.可識別偏誤檢測措施(Measures to detect identifiable biases):描述所採取的偵測與矯正訓練資料存在偏誤的方法。 (七)、訓練期間的計算資源(Computational resources (during training)) 1.訓練時間(Training time):所測量期間及其時間的描述。 2.訓練使用的計算量(Amount of computation used for training):說明訓練使用的測量或估計計算量,以運算表示並記錄至其數量級(例如 10^24 浮點運算)。 3.測量方法論(Measurement methodology):描述用於測量或估計訓練使用計算量的方法。 (八)、訓練及推論的能源消耗(Energy consumption (during training and inference)) 1.訓練耗能(Amount of energy used for training)及其計量方法:說明訓練使用的測量或估計能源量,以百萬瓦時表示(例如 1.0x10^2 百萬瓦時)。若模型能源消耗未知,可基於所使用計算資源的資訊估計能源消耗。若因缺乏計算或硬體提供者的關鍵資訊而無法估計訓練使用能源量,提供者應披露所缺乏的資訊類型。 2.推論運算耗能的計算基準 (Benchmarked amount of computation used for inference1)及其方法:以浮點運算表示方式(例如 5.1x10^17 浮點運算)說明推論運算的基準計算量,並提供計算任務描述(例如生成100000個代幣Token)及用於測量或估計的硬體(例如 64個Nvidia A100)。 二、提供GPAI模型相關資訊(措施1.2) 通用人工智慧模型投放市場時,應透過其網站或若無網站則透過其他適當方式,公開揭露聯絡資訊,供AIO及下游提供者請求取得模型文件中所含的相關資訊或其他必要資訊,以其最新形式提供所請求的資訊。 於下游提供者請求時,GPAI模型提供者應向下游提供者提供最新模型文件中適用於下游提供者的資訊,在不影響智慧財產權及機密商業的前提下,對使其充分了解GPAI模型的能力及限制,並使該等下游提供者能夠遵循其AIA法案義務。資訊應在合理時間內提供,除特殊情況外不得超過收到請求後14日。且該資訊的部分內容可能也需要以摘要形式,作為GPAI模型提供者根據AIA法案第53條第1項(d)款必須公開提供的訓練內容摘要 (training content summary) 的一部分。 三、確保資訊品質、完整性及安全性(措施1.3) GPAI模型提供者應確保資訊的品質及完整性獲得控制,並保留控制證據以供證明遵循AIA法案,且防止證據被非預期的變更 (unintended alterations)。在制定、更新及控制資訊及記錄的品質與安全性時,宜遵循既定協議 (established protocols) 及技術標準 (technical standards)。 參、事件評析 一、所要求之資訊完整、格式標準清楚 歐盟AGPAI實踐準則」的「透明度 (Transparency)」提供模型文件的標準表格,做為GPAI實踐準則透明度章節的核心工具,從名稱、屬性、功能等最基本的模型資料,到所需軟硬體、使用政策、散佈管道、訓練資料來源、演算法設計,甚至運算與能源消秏等,構面完整且均有欄位說明,而且部分欄位直接提供選項供勾選,對於GPAI模型提供者提供了簡明容易的AIA法案資訊要求合規做法。 二、表格設計考量不同利害關係人的資訊需求 GPAI實踐準則透明度章節雖然主要目的是為GPAI模型提供者對由需要充分了解模型及其能力的下游提供者提供資訊,以便其在產品履行AIA法案下的義務。但相關資訊的提供目的,同時也在於讓AIO及國家主管機關履行其AI法案職責,特別是高風險AI的評估。因此,表格的資訊標示區分該欄資訊係用於AI辦公室 (AIO)、國家主管機關 (NCAs) 或下游提供者 (DPs)者,例如模型的訓練、資料清理處理方法、不當內容的檢測、測試及驗證的資料來源、訓練與運算的能秏、就多屬AIO、NCAs有要求時始須提供的資料,無須主動公開也兼顧及GPAI模型提供者的商業機密保護。 三、配套要求公開並確保資訊品質 該準則除要求GPAI模型提供者應記錄模型文件,並要求於網站等適當地,公開提供下游提供者請求的最新的資訊。而且應在不影響智慧財產權及機密商業的前提下,提供其他對使其充分了解GPAI模型的能力及限制的資訊。同時,為確保資訊的品質及完整性獲得控制,該準則亦明示不僅應落實且應保留證據,以防止資訊被非預期的變更。 四、以透明機制落實我國AI基本法草案的原則 我國日前已由國科會公告人工智慧基本草案,草案揭示「隱私保護與資料治理」、「妥善保護個人資料隱私」、「資安與安全 」、「透明與可解釋 」、「公平與不歧視」、「問責」原則。GPAI實踐準則透明度章節,已提供一個重要的啟示—透過AI風險評測機制,即可推動GPAI模型資訊的揭露,對相關資訊包括訓練資料來源、不當內容防止採取做一定程度的揭露要求。 透過相關資訊揭露的要求,即可一定程度促使AI開發提供者評估認知風險,同時採取降低訓練資料、生成結果侵權或不正確的措施。即便在各領域作用法尚未能建立落實配套要求,透過通過評測的正面效益,運用AI風險評測機制的資訊提供要求,前揭草案揭示的隱私、著作、安全、問責等原則,將可以立即可獲得一定程度的實質落實,緩解各界對於AI侵權、安全性的疑慮。 本文為資策會科法所創智中心完成之著作,非經同意或授權,不得為轉載、公開播送、公開傳輸、改作或重製等利用行為。 本文同步刊登於TIPS網站(https://www.tips.org.tw) [1]The European AI Office, The General-Purpose AI Code of Practice, https://digital-strategy.ec.europa.eu/en/policies/contents-code-gpai 。(最後閱覽日:2025/07/30) [2]The European AI Office, Code of Practice for General-Purpose AI Models–Transparency Chapter, https://ec.europa.eu/newsroom/dae/redirection/document/118120 。(最後閱覽日:2025/07/30)
臺北高等行政法院103年度訴更一字第120號判決對健保資料作目的外運用之態度 Novartis被質疑濫用美國FDA獎勵研發治療被忽視熱帶疾病藥物之制度國際藥廠Novartis被指控濫用美國食品藥品管理局(the U.S. Food and Drug Administration,簡稱FDA)為鼓勵藥廠投入研發被忽視疾病治療藥物所設立的一套獎勵制度。 這套制度是根據2007年美國國會所通過之美國食品藥品管理法修正案(the Food and Drug Administration Amendments Act of 2007)而創設,主要是給予向FDA申請治療其表列之被忽視熱帶疾病(例如瘧疾、血吸蟲病、利什曼病等)藥品查驗登記並獲通過之申請者一份所謂「藥品優先審查劵」(priority review voucher),讓該申請者可以用於之後所提出的人類藥品查驗登記申請,而得以享有優先審查之權利。 這個所謂「藥品優先審查劵」對於藥廠來說可說是價值非凡,因為藥品查驗登記程序正常情況往往超過10個月以上,但是適用優先審查程序之申請案,卻可以有九成左右在6個月內就獲得通過,這對於藥廠的好處在於,其可以比其他競爭者更快地將其所生產藥品上市販售。 Novartis於2009年4月獲得FDA通過其就治療瘧疾藥物Coartem之查驗登記申請,而成為適用此獎勵制度之首例並獲得「藥品優先審查劵」。Novartis的行為之所以招致批判,因為其所申請之藥物Coartem並非是針對治療瘧疾所研發出來的新藥,其從1999年起便已在部分國家被許可使用,只是該藥物在美國從未被申請查驗登記而獲准通過。由於上述獎勵制度並未言明是針對新開發之治療熱帶疾病的藥品,所以Novartis的動作可以符合其要件並獲得獎勵,但此舉卻有鑽法律漏洞之嫌。