歐盟議會發布《可信賴人工智慧倫理準則》

  2019年4月9日,歐盟議會發布《可信賴人工智慧倫理準則》(Ethics Guidelines for Trustworthy AI)。此次內容大致延續歐盟人工智慧高階專家小組(High-level Expert Group on Artificial Intelligence)於2018年12月18日發布的《可信賴人工智慧倫理準則草案》(Draft Ethics Guidelines for Trustworthy Artificial Intelligence)之內容,要求人工智慧須遵守行善(do good)、不作惡(do no harm)、保護人類(preserve human Agency)、公平(be fair)與公開透明(operate transparency)等倫理原則;並在4月9日發布的正式內容中更加具體描述可信賴的人工智慧的具體要件,共計七面向概述如下:

  1. 人類自主性和監控(Human agency and oversight):AI係為強化人類能力而存在,使人類使用者能夠做出更明智的決策並培養自身的基礎能力。同時,AI應有相關監控機制以確保AI系統不會侵害人類自主性或是引發其他負面效果。本準則建議,監控機制應可透過人機混合(一種整合人工智慧與人類協作的系統,例如human-in-the-loop, human-on-the-loop, and human-in-command)的操作方法來實現。
  2. 技術穩健性和安全性(Technical Robustness and safety):為防止損害擴張與確保損害最小化,AI系統除需具備準確性、可靠性和可重複性等技術特質,同時也需在出現問題前訂定完善的備援計劃。
  3. 隱私和資料治理(Privacy and data governance):除了確保充分尊重隱私和資料保護之外,還必須確保適當的資料治理機制,同時考慮到資料的品質和完整性,並確保合法近用資料為可行。
  4. 透明度(Transparency):資料、系統和AI的商業模型應該是透明的。可追溯性機制(Traceability mechanisms)有助於實現這一目標。此外,應以利害關係人能夠理解的方式解釋AI系統的邏輯及運作模式。人類參與者和使用者需要意識到他們正在與AI系統進行互動,並且必須了解AI系統的功能和限制。
  5. 保持多樣性、不歧視和公平(Diversity, non-discrimination and fairness):AI不公平的偏見可能會加劇對弱勢群體的偏見和歧視,導致邊緣化現象更為嚴重。為避免此種情況,AI系統應該設計為所有人皆可以近用,達成使用者多樣性的目標。
  6. 社會和環境福祉(Societal and environmental well-being):AI應該使包含我們的後代在內的所有人類受益。因此AI必須兼顧永續發展、環境友善,並能提供正向的社會影響。 
  7. 問責制(Accountability):應建立機制以妥當處理AI所導致的結果的責任歸屬,演算法的可審計性(Auditability)為關鍵。此外,應確保補救措施為無障礙設計。

相關附件
※ 歐盟議會發布《可信賴人工智慧倫理準則》, 資訊工業策進會科技法律研究所, https://stli.iii.org.tw/article-detail.aspx?d=8248&no=67&tp=1 (最後瀏覽日:2025/12/03)
引註此篇文章
你可能還會想看
歐盟發布新人工智慧規範,以風險程度判斷防止科技濫用

  歐盟執委會於2021年4月21日提出「人工智慧規則」(AI regulation)草案,成為第一個結合人工智慧法律架構及「歐盟人工智慧協調計畫」(Coordinated Plan on AI)的法律規範。規範主要係延續其2020年提出的「人工智慧白皮書」(White Paper on Artificial Intelligence)及「歐盟資料策略」(European Data Strategy),達到為避免人工智慧科技對人民基本權產生侵害,而提出此保護規範。   「人工智慧規則」也依原白皮書中所設的風險程度判斷法(risk-based approach)為標準,將科技運用依風險程度區分為:不可被接受風險(Unacceptable risk)、高風險(High-risk)、有限風險(Limited risk)及最小風險(Minimal risk)。   「不可被接受的風險」中全面禁止科技運用在任何違反歐盟價值及基本人權,或對歐盟人民有造成明顯隱私風險侵害上。如政府對人民進行「社會評分」制度或鼓勵兒童為危險行為的語音系統玩具等都屬於其範疇。   在「高風險」運用上,除了作為安全設備的系統及附件中所提出型態外,另將所有的「遠端生物辨識系統」(remote biometric identification systems)列入其中。規定原則上禁止執法機構於公眾場合使用相關的生物辨識系統,例外僅在有目的必要性時,才得使用,像尋找失蹤兒童、防止恐怖攻擊等。   而在為資料蒐集行為時,除對蒐集、分析行為有告知義務外,也應告知系統資料的準確性、安全性等,要求高度透明化(Transparency obligations)。不只是前述的不可被接受風險及高風險適用外,有限風險運用中的人工智慧聊天系統也需要在實際和系統互動前有充足的告知行為,以確保資料主體對資料蒐集及利用之情事有充足的認知。   在此新人工智慧規範中仍有許多部份需要加強與討論,但仍期望在2022年能發展到生效階段,以對人工智慧科技的應用多一層保障。

醫療科技公司轉型提供資料類型產品解決方案於美國之智財權布局建議

醫療科技公司轉型提供資料類型產品解決方案於美國之智財權布局建議 資訊工業策進會科技法律研究所 2023年05月31日 過去,醫療科技公司僅專注於開發針對醫療問題的硬體解決方案,近年這些企業則致力於轉型開發收集及利用大量病人、資料提供者資料之產品,而轉變成資料平台公司,而更可以全面了解病人及客戶生活習慣及健康狀況。 其中許多解決方案均利用人工智慧(Artificial Intelligence, AI)及機器學習(Machine Learning, ML),相較傳統上研發成果多為硬體設備,現今則轉變成出現大量軟體解決方案,保護研發成果之方式將發生改變,如何選擇合適的智慧財產權保護研發成果成為企業重要課題,此亦影響企業如何做智慧財產布局及擬定公司相關經營策略,因此建議企業——尤其是開發醫療資訊平台之醫療科技公司,特別是致力於開發醫療器材軟體(Software as a Medical Device, SaMD)、醫療設備嵌入式軟體(Software In a Medical Device, SiMD)及應用於醫療技術中的人工智慧等新興領域時可以參考以下提供之思考方向選擇對於企業發展最適切之智慧財產權保護態樣。[1] 研發成果如欲獲得專利保護,該發明必須係獨一無二且可以傳授的——即人們不能將自然發生或不可再現的事物申請專利,因為發明需透過專利以清楚的方式概述,並明確定義專利內容,並向公眾揭露,以便於申請人取得專利、並於專利期限屆滿後(專利保護期限因各國法規、專利類型而將有所不同,建議企業應了解欲布局之國家相關法規規定,如台灣之發明專利[20年]、新型專利[10年]、設計專利[15年]),使大眾得藉以實施該技術內容。[2] 在美國,專利係由美國專利商標局賦予所有權人於一定期間內壟斷其發明之權利,即美國聯邦法律更使專利所有權人在專利權效期內得以禁止他人於該期間內於美國製造、使用、銷售或進口至美國這項已獲得專利保護之發明,此給予專利權人一個得以建立一個阻止他人進入市場的巨大障礙,可防止競爭及保護專利權人可以自由實施該權利。[3] 因專利有上述特性,文章作者建議,如裝置(device)、該裝置使用之軟體,對於從事新藥開發之藥廠,於保護新穎成分(New Chemical Entities)、相關之治療方法及人工智慧相關發明較適合以專利保護。[4] 營業秘密係指資訊擁有者已盡合理努力保密,且不為公眾所周知或非可被公眾輕易探知而具有獨立經濟價值的,任何形式及類型之資訊。合理努力可能包括(但不限於),要求員工簽署保密協議、定期提醒員工其負有保密義務(如:針對職務不同/所從事不同工作之員工,保密義務內容、程度、時間是否有所不同?)、踐行必要而知悉(need to know) 原則(如:執行不同工作之人員是否可互相存取各自的資料? 抑或僅能存取自己工作所需之資料?)、佈署IT安全措施或辦公室安全措施之狀況(如:是否有門禁?資料如有異常存取狀況時是否有示警機制?)並須即時調查及採取行動打擊涉及盜用營業秘密之行為(如:是否有相關通報不當使用營業秘密之管道及監控機制?)[5] 在美國,傳統上營業秘密之保護是結合各州法律而成,除了紐約州及北卡羅萊納州以外,所有州都頒布了其特有版本的《統一營業秘密法》(Uniform Trade Secrets Act, UTSA)——係一項1979年頒布的統一法案。於2016年,國會又頒布了《保護營業秘密法Defend Trade Secrets Act, DTSA》,該法案保障當事人於聯邦法院提起營業秘密訴訟之權利,且只要促進犯罪行為之行為發生於美國,當事人即可於國外進行訴訟,此外,《統一營業秘密法》中規定營業秘密包含公式、模式、彙編、程式、設備、方法、技術或過程。而依《保護營業秘密法》(Defend Trade Secrets Act, DTSA),營業秘密可為任何形式,無論係以物理、電子、圖形、攝影或書面形式儲存、編輯或紀錄之財務、商業、科學、科技、經濟或工程資訊均為營業秘密之範疇,因此,營業秘密之適用範圍較廣,於美國甚至抽象之想法均可受營業秘密保護。[6] 與僅提供有限保護期限之專利有別,如欲獲得營業秘密之保護,僅需資訊持續保密並存在並持續存有價值,該資訊即會持續受到營業秘密保護並擁有無限的有效期限,亦即,只要該資訊仍為秘密,即受到營業秘密之保護。如:可口可樂已將其配方作為營業秘密保護了130多年之久。惟與專利不同的是營業秘密一但被公眾周知或得以透過適當方式獨立開發(如競爭對手自己獨立開發而產出之資訊),就將失去營業秘密之保護。[7] 因為營業秘密之特性,諸如蛋白質結構、客戶清單、機器學習演算法、原始碼、化學製程參數(如:會產生化學反應之溫度或壓力)、甚至是醫療科技公司近年致力經營的人工智慧領域所產出的人工智慧、新的模型訓練方法、優化模型參數、消極專有技術(如:不該做什麼)。[8] 惟選擇專利抑或營業秘密之方式保護其研發成果將視企業的業務為何決定,如缺乏透明度之產業可能較適合以營業秘密方式保護,而非專利。例如:網路安全公司可能傾向於營業秘密保護,因為申請專利揭露其機密安全演算法可使競爭對手開發競爭產品或使駭客進行量身訂製之攻擊。相較之下,製造容易檢測、針對消費者之電子產品之企業更依賴專利保護,製造具有行業標準化品質之產品之企業亦是如此。[9] 總體而言,是否容易被逆向工程將會是決定以專利或營業秘密保護之關鍵性調查方式。因申請專利必須揭露細節事項,將對廣泛保護資料為基礎之軟體(且有使用人工智慧或機器學習)較具挑戰性,故專利較適合保護裝置(device)及會相互作用之實體產品和軟體。而營業秘密則要求資料所有人無限期地維持秘密性,亦須注意自己的想法獲得他人關注時遭仿效之風險,故較適合造價高或難以仿效的軟體、製造方法或產品。[10] 而對於生技醫療公司而言,其應考量使用混和策略以保護人工智慧相關之創新,如:專有之原始和訓練資料、模型之優化參數、將專有技術用於訓練模型及其他難以進行逆向工程之人工智慧相關的此類機密資訊,可能較適合用營業秘密保護,同時該技術的其他方面,如人工智慧系統或使用其開發之藥物則可透過專利保護。[11]惟不論企業決定要將該資訊做為營業秘密保護或申請專利保護,企業對於研究人員發表相關資訊的行為均應審慎評估,避免因揭露而喪失專利之新穎性或營業秘密之秘密性的情形。 本文同步刊登於TIPS網站(https://www.tips.org.tw) [1]Kristin Havaranek, Martin Gomez, Matt Wetzel, Steven TJoe & Stephanie Philbin, Top 5 IP Considerations for Medtech Companies Transitioning To Data-enabled Product Solutions (2023), https://medcitynews.com/2023/01/top-5-ip-considerations-for-medtech-companies-transitioning-to-data-enabled-product-solutions/ (last visited June 1,2023). [2]John Quinn, Protecting Inventions Through Patents and Trade Secret (2023), https://www.newsweek.com/protecting-inventions-through-patents-trade-secrets-1788352 (last visited May 30, 2023). [3]Id. [4]Charles Collins-Chase, Kassanbra M. Officer & Xinrui Zhang, United States: Strategic Intellectual Property Considerations For Protecting AI Innovations In Life Sciences (2023), https://www.mondaq.com/unitedstates/trade-secrets/1276042/strategic-intellectual-property-considerations-for-protecting-ai-innovations-in-life-sciences (last visited May 30, 2023) [5]Id. [6]John Quinn, supra note 2. [7]Id. [8]Collins-Chase et al., supra note 4. [9]John Quinn, supra note 2. [10]Havranek et al., supra note 1. [11]Collins-Chase et al., supra note 4.

FDA發佈「拒絕接受510(K)審查申請之政策」指導文件草案

  醫療器材在美國上市所需依循的途徑,為申請510(k)審查或上市前審查(Premarket Approval, PMA)。順序上第一步,必須在90天前向美國食品藥物管理局(U.S. Food and Drug Administration, FDA)提出「上市前通知」(Premarket Notification, PMN)申請。所謂的510(K),係指美國《食品、藥物及化妝品法》(Federal Food, Drug, and Cosmetic Act, FD&C Act)第510節之規定,在申請的流程中,FDA會審查廠商所提出的佐證,是否具備與已上市的相同器材一樣之「實質相等性」(Substantial Equivalence),若不具備「實質相等性」,即必須進入PMA申請程序。   FDA指出過往機關接受許多不適當的501(K)審查申請,而必須要求這些不適當的申請廠商進一步補充文件,以進行實質審查。FDA指出這樣的程序,進行過度頻繁的審查,而浪費不少寶貴的資源及人力。FDA於2012年8月10發佈「拒絕接受510(K)審查申請之政策」指導文件草案。作為改善與加強501(K)申請流程之效率與有效性。新的指導文件草案之改善目標,係要求廠商必須提出傳統(Traditional)、特殊(Special)、簡略(Abbreviated)三種不同的申請所需之審查文件,FDA會先進行審查文件是否具備的預先審核,始進行實質審查。廠商必須依照指導文件草案內含的核對表(Checklist)所規定必須提交之審查文件,FDA有15天的時間回應廠商是否完成繳交,或要求廠商在新的15天之內補件,而承認 (Acceptance)形式審查完備,始進行實質審查。廠商亦可針對缺繳之文件,說明不提供之理由,並提出相關證明。指導文件草案提供以下幾個準則,提供審查機關審視核對表完備與否: 該產品是否為器材; 該項申請之對象是否正確; 是否為適當合法510(k)申請; 是否有相同的器材經PMA程序核准上市; 所提出的臨床數據,申請者是否受限於「申請規範政策」(Application Integrity Policy, AIP)。   FDA透過這樣預先審查之方式,檢視廠商所提出之申請,是否符合形式的要件,而決定是否進行實質審查,以避免浪費行政機關的資源與人力進行不適當的審查,希冀改善FDA目前501(k)審查申請制度之效率與有效性。

世界智慧財產權組織發佈2015年全球創新指數排名

  世界智慧財產權組織於2015年9月17日發佈的2015年全球創新指數報告(The Global Innovation Index)顯示,瑞士、英國、瑞典、荷蘭和美國是世界上最具創新力的前5名國家。   全球創新指數自2007年起每年發布,2015 年全球創新指數是該指數的第8版,由康乃爾大學(Cornell University)、歐洲工商管理學院(INSEAD)和聯合國專門機構世界智慧財產權組織(WIPO)共同發布,現已成為重要的評比基準,為全球國家競爭力與政策發展重要項目。世界智慧財產權組織總幹事Francis Gurry在當天的新聞發佈會上說:「每個國家都必須找到最佳的政策組合,以調整其經濟內部創新與創造的潛力」。從整體觀看,今年前25位排名都是高收入經濟體,與以往相較變動不大。值得注意的是,瑞士已連續5年位居第一,英國則從4年前的第8位躍升至第2位。英國的智慧財產權部長說:「產出優秀的科研成果向來是英國的優良傳統,英國人口比率佔不到世界1%,但發表頂尖的研究成果佔16%,卓越的科研是英國躍升國際創新排名第2位的主要原因。英國政府致力於創新研發、為新創提供足夠的智慧財產權保護、支持新創產業。」其後依次為:瑞典、荷蘭、美國、芬蘭、新加坡、愛爾蘭、盧森堡和丹麥。亞洲國家中只有新加坡進入前10名。   該份報告顯示,在創新質量方面,其中美國和英國保持領先,主要是因為其擁有世界級的大學;接著是日本、德國和瑞士。在創新質量上得分較高的中等收入經濟體則有中國、巴西和印度。 為了支持全球創新討論、指引各項政策、強調良好的作法,需要利用相關指標對創新和相關政策表現進行評估。全球創新指數創造出一種環境,即是使這些相關創新因素得到持續評估,其特色列舉如下: 1. 141個國家的現況介紹,包括根據79項指標所得出之數據、排名與優勢情形。 2. 根據30多個國際公私部門指標所得出的79個數據表,其中55個是可靠數據,19個是綜合指標,5個是問卷調查。 3. 公開透明且可複製的計算方法,其中每個指數排名(全球創新指數、產出和投入分項指數)有90%的置信區間,加上對影響每年排名的因素進行分析。 2015年全球創新指數是以兩個分項指數的平均值計算。創新投入分項指數衡量的是顯現出創新活動的國家經濟因素,這些因素共分為五大類:(1)機構,(2)人力資本與研究,(3)基礎設施,(4)市場成熟度,和(5)商業成熟度。「創新產出分項指數」是由創新成果的實際創新產出為證,分為兩大類:(6)知識與技術產出及(7)創意產出。

TOP