「新車輛及系統技術」(Neue Fahrzeug- und Systemtechnologien)補助計畫係德國為確保汽車產業能夠在未來保持其技術領先地位所規劃的研究補助方案,該計畫從2015年6月起為期4年,聚焦車輛本體設計及車聯網技術解決方案;2018年11月,有感數位化變革所帶來的壓力,以及聯網自動駕駛顛覆未來交通面貌的潛力,德國聯邦經濟及能源部(BMWi)決定將前述計畫延長4年至2022年12月31日,並追加補助金額至每年6000萬歐元,促進聯網自動化駕駛及創新車輛領域的相關研發,具體鎖定的項目包含:(1)創新感測技術與傳動系統(2)高精度定位技術(3)迅速、安全、可靠的通信協作技術(4)創新資料融合及資料處理程序(5)人車互動技術(6)配套的測試程序與認證(7)電動車搭載自動駕駛功能的具體解決方案(8)透過輕量化提升能源效率技術(9)空氣動力學優化技術(10)創新動力推進技術。聯邦政府希望藉由第二輪的「新車輛及系統技術」補助計畫,協助歷來引以為傲的汽車工業克服資通訊技術革新、氣候保護趨嚴及能源效率要求所帶來的挑戰,全力避免此一德國重要經濟命脈淪為數位化浪潮下的犧牲者。
本文為「經濟部產業技術司科技專案成果」
中國大陸國務院常務會議於2014年11月19日通過其《促進科技成果轉化法修正案(草案)》,並將提請全國人大常委會審議。本次修法重視「國家制定政策,充分發揮市場在科技成果轉化中的決定性作用,建立科技成果轉化市場導向機制和利益分配機制」,其中明文規定中國大陸國務院和地方各級人民政府應當加強財政、稅收、產業、金融、政府採購等政策,以強化科技成果轉化相關活動,推動科技與經濟結合,加速科學技術進步,實現創新驅動發展。 按中國大陸《促進科技成果轉化法》係於1996年10月1日施行,歷經2007年之修訂,共計6章37條。本次通過的修正草案,增加至9章58條,其中保留和擴充現行法13條,修改合併20條,刪除4條,新增29條。本次修法加大其政府對於科技成果轉化的財政性資金投入,並可引導其他民間資金投入。此外,本次修法也放寬中國大陸高等院校和重點研究院所之科技成果的歸屬,讓其能夠順利地轉化至民間企業。例如:草案第8條規定利用財政性資金設立的科研機構、高等學校可以採取合作實施、轉讓、許可和投資等方式,向企業和其他組織轉移科技成果,並且國家鼓勵這類機構優先向中小企業轉移科技成果。 另,草案第10條亦規定科研機構、高等學校對其依法取得的科技成果,可以自主決定轉讓、許可和投資,通過協定定價、在技術市場掛牌交易等方式確定價格。相關修正大幅放寬成果運用的彈性,惟科研機構、高等學校仍應依草案第14條規定,向主管部門提交科技成果轉化情況年度報告;主管部門應當將科技成果轉化情況納入對科研機構、高等學校的考核評價體系。 本次修法還有一個重點是放寬中國大陸科研機構的研究員及大學教授從事科技成果轉化活動。例如:草案第13條規定利用財政性資金設立的科研機構、高等學校應當建立符合科技成果轉化工作特點的職稱評定、崗位管理、考核評價和工資、獎勵制度。而草案第19條第一項規定,科研機構、高等學校科技人員可以在完成本職工作的情況下兼職從事科技成果轉化活動,或者在一定期限內離職從事科技成果轉化活動。同條第二項亦規定科研機構、高等學校應當建立制度規定或者與科技人員約定兼職、離職從事科技成果轉化活動期間和期滿後的權利和義務。 綜上,本次修法除強化中國大陸研發成果之運用外,更替中國大陸大學教授打開一條前往民間服務或創業的康莊大道,影響不可謂不大,但修正草案最後尚須經中國大陸全國人大常委會審議通過,將持續觀察審議之最終結果。
NIH公布最新GWAS基因型與表現型數據資料庫分享近用方針經過了一整年向各界諮詢與彙整各方意見後,美國國家衛生研究院(NIH)於今年8月底,公布其所資助之GWAS基因型與表現型數據資料庫(genotype-phenotype datasets)之分享近用方針。此方針希望在保障研究參與者的個人隱私前提下,協助科學研究社群取得相關基因數據資料。GWAS數據資料對科學有顯著的幫助,並具有龐大的潛在公共利益,然而,提供個人的基因型與表現型資料進行科學研究,涉及個人隱私與秘密之保護,故具有高度的敏感性而受到大眾關切。 因此,NIH在訂定這項方針時,為了搜集各方意見,首先於去年5月,宣布計畫更新GWAS的數據資料分享政策,後於去年8月公開徵詢大眾對方針之意見,次又依據所蒐集之各方意見,於去年12月針對此分享政策舉辦會議進行討論,根據這些討論所形成之共識,併同NIH內部討論之結果,最後形成此項分享政策。 方針中指出,如何在促進科學研究之目的,與保護相關參與人的權利間取得平衡,是相當重要的議題,故本方針分別對研究人員近用之程序、基因數據資料的處理與參與者權利之保護進行詳細規範。舉例來說,本方針要求欲近用資料庫的研究人員,提供其研究必須使用此資料庫的書面說明資料;另外也會對所有存放在資料庫的數據資料進行去個人化處理,使該項資訊無法再以技術判別,並使用隨機方法加密,以確保參與者的隱私與保密資料不遭外洩。根據NIH表示,此方針雖然僅是對GWAS數據資料庫的近用作規範,但未來亦有意將其作為近用其他類似資料庫的規範參考架構。
「巨量資料應用」當工業的製造生產過程經過一連串自動化、產量化以及全球化之變革歷程之後,智慧工廠的發展已經成為未來各國的重點目標。生產力4.0的設計中,巨量資料(Big Data)是重要的一環,以製造業為例,傳統上將製造生產取得的數據僅用於追蹤目的使用,鮮少做為改善整體操作流程的基礎,但在生產力4.0推進之後,則轉變為如何藉由巨量資料來提升生的效率、利用多元資源的集中化與分類處理,並經過分析取得改善行動方式,使生產最佳化,再結合訂單需求預期分析,依市場變化調整製造產量,達成本控制效果。 在我國104年9月公布之「2015行政院產力4.0科技發展方案」,亦提及智慧機械、智慧聯網、巨量資料、雲端運作等技術開發,使製造業、商業服務業、農業產品服務等,提升其附加價值。除此之外,經濟部積極規劃佈建巨量資料自主技術研發能力並且促成投資,落實應用產業智慧化與巨量資料產業化之目標。然而,巨量資料的應用因涉及大量的資料蒐集與利用,因此,未來應著重於如何將資料去辨識化,顧及隱私與個人資料之保護。目前,針對此部分,法務部將研擬個人資料保護法修正案,制訂巨量資料配套法規。
逐漸式微的「不可避免揭露原則(Inevitable Disclosure Doctrine)」在2023年,多個美國法院判決拒絕採納「不可避免揭露原則(Inevitable Disclosure Doctrine)」,顯示出該原則將不再是原告於營業秘密訴訟中的一大利器,原告亦無法僅透過證明前員工持有營業秘密資訊且處於競爭狀態,便要求法院禁止該名前員工為其競爭對手工作。 在2023年2月,美國伊利諾伊州北區法院於PetroChoice v. Amherdt一案中指出,法院在適用「不可避免揭露原則」時會遏制競爭對手之間的員工流動,故將評估個案事實並嚴格限制其適用。在2023年6月,美國伊利諾伊州北區法院於Aon PLC v. Alliant Ins. Services一案中指出,根據2016年美國國會所通過的「保護營業秘密法案(Defend Trade Secrets Act, DTSA)」,該法案拒絕了「不可避免揭露原則」的適用,並禁止法院僅憑他人所知悉的資訊,阻礙其尋求新的工作,因此駁回了原告的損害賠償主張。在2023年9月,美國密蘇里州東區法院於MiTek Inc. v. McIntosh一案中同樣拒絕了「不可避免揭露原則」的適用,儘管該州的州法並未明確表達採納或拒絕該原則。 除此之外,美國聯邦法院在去年度的每一份報告意見中(Reported Opinion),皆未顯示出根據「不可避免揭露原則」申請禁令或取得救濟是合理的。換言之,大多數的美國法院都拒絕採納「不可避免揭露原則」或嚴格限制其適用。 綜上所述,儘管「不可避免揭露原則」能有效防止來自前員工不當使用其營業秘密的威脅,但其不再是未來營業秘密訴訟中的勝訴關鍵。 本文同步刊登於TIPS網站(https://www.tips.org.tw)