2019年6 月19日歐盟普通法院(THE GENERAL COURT)於以商標並不具備獨特性裁定,長年深植人心之Adidas「三條紋」商標(下稱系爭商標)無效。
Adidas於2013年底,將系爭商標向歐盟智慧財產局提交「圖形商標」(figurative mark)之註冊申請,並登記商標用途為服裝、鞋類、帽子。而於隔年比利時鞋類公司Shoe Branding Europe BVBA依相關規定(Article 52(1)(a)、Article 7(1)(b) of Regulation No 207/2009)提出系爭商標無效之申請,經審議後系爭商標因無任何獨特性,批准無效。隨後Adidas向歐盟智慧財產局提出上訴(Articles 58 to 64 of Regulation No 207/2009),上訴聲明中並未針對系爭商標缺乏獨特性一事提出異議,而是稱系爭商標已符合「經使用取得其獨特性」之規定(Article 7(3) and Article 52(2) of Regulation No 207/2009)。惟歐盟智慧財產局認為,Adidas無法證明系爭商標在歐盟境內有經使用而取得獨特性駁回上訴,隨後Adidas再向歐盟普通法院提出訴訟。
最終歐盟普通法院之裁決,仍維持2016年歐盟智慧財產局取消此系爭商標註冊之決定。歐盟普通法院認為Adidas未能證明「三條紋」在全歐盟28國內有「獨特性」,系爭商標僅只為「普通的象徵標記」。所謂「獨特性」應為於全歐盟國之消費者清楚知悉系爭商標之「三條紋」等於Adidas,並能與其他公司之產品作出區分。
Horizon Europe為歐盟2021-2027年之科技研發架構計畫。科技研發架構計畫(Framework Programmes for Research and Technological Development,依不同期別縮寫為FP1-FP8)為全球最大型的多年期科研架構計畫,今期之Horizon 2020已進入尾聲,2021年起所實施的歐盟科研架構計畫──FP9正式命名為「Horizon Europe」。 為打造歐盟成為創新市場先鋒,延續Horizon 2020計畫成效,Horizon Europe重視投資研發與發展創新,包含強化歐盟的科學與技術基礎、促進歐洲創新能力,以及永續歐洲社會經濟的模式與價值。 Horizon Europe發展方向分為三大主軸,分別為: 卓越科學(Excellent Science):透過歐洲研究理事會(European Research Council, ERC)、新居禮夫人人才培育計畫(Marie Skłodowska-Curie Actions, MSCA)和研究基礎設施(Research Infrastructures)加強歐盟科學領導力。 全球挑戰與產業競爭力(Global Challenges and European Industrial Competitiveness):此主軸再分別發展6個子題,以應對歐盟和全球政策並加速產業轉型。該6個子題分別為(1)健康;(2)文化與創造力;(3)社會安全;(4)數位與太空產業;(5)氣候、能源與交通;(6)糧食、生物經濟(Bioeconomy)、自然資源、農業與永續環境。 創新歐洲(Innovative Europe):促進、培育和部署市場創新,維護友善創新環境之歐洲生態系統(European ecosystems)。 此外,Horizon Europe擬把實驗階段中具備高潛力和前瞻性的技術帶入市場,轉以任務導向協助新創產業設立,推動跨事業多方整合。
德國聯邦最高法院(BGH)判決醫師評價平台「Jameda」須刪除受評醫師個人資料德國聯邦最高法院(Bundesgerichtshof, BGH)在2018年2月20日的判決(Urt. V. 20.02.2018 – Az. VI ZR 30/17)中認定,網路評價網站(Bewertungsportale)之業務雖未違反聯邦資料保護法(Bundesdatenschutzgesetz, BDSG)規定,但其評價立場必須維持中立。醫師評價平台「Jameda」(www.jameda.de)之商業行為違反此項原則,故須依原告要求,刪除其在該網站之所有個人資料。 本案中,原告為執業皮膚科醫師,且非醫師評價平台「Jameda」之付費會員。然「Jameda」不僅將該醫師執業簡介列入其網站,且同時在其個人簡介旁,列出與其執業地點相鄰,具競爭關係之其他同為皮膚科醫師之付費會員廣告。反之,付費會員不但可上傳個人照片,且在其執業簡介旁,不會出現與其診所相鄰之競爭者廣告。 聯邦最高法院依據聯邦資料保護法第35條第2項第2款第1號 (§35 Abs. 2 S. 2 Nr. 1 BDSG) 規定,並經衡量同法第29條第1項第1款第1號 (§29 Abs. 1 S. 1 Nr. 1 BDSG) 規定之效果後,同意原告對「Jameda」提出刪除網頁所列個資之請求。法院見解認為,「Jameda」的廣告策略使其失去資訊與意見傳遞者之中立角色,並以自身商業利益為優先,故其言論自由不得優於原告之資訊自主權(informationelle Selbstbestimmung)。 該判決強制網路評價平台嚴格審查本身之廣告供應商務,並與聯邦憲法法院(Bundesverfassungsgericht)見解一致,用於商業目的之言論表達僅有低於一般言論自由的重要性。儘管如此,評價平台仍被視為介於患者間不可或缺的中介者(unverzichtbare Mittelperson),可使互不相識的病患,藉此獲得經驗交流的機會。 儘管本案判決同意原告刪除評價網站中所儲存個人資料之請求,但見解中,仍肯定評價網站具有公開醫療服務資訊之功能,符合公眾利益,受評價醫師被公開之個人簡介亦僅涉及與社會大眾相關之範圍。針對網站評分及評論功能之濫用,醫師仍可對各種不當行為分別採取法律途徑保障自身權益。由此可知,德國聯邦最高法院仍認定,評價網站之評分與評論機制,仍符合聯邦資料保護法規範之宗旨,惟若該評價網站以評價機制作為商業行銷手段,則不得主張其言論及意見表達自由高於受評價者之資訊自主權。
聯合國科研創新推動永續發展(STI for SDGs)2015年9月25日,聯合國發布「2030永續發展議程(2030 Agenda for Sustainable Development)」,強調科研創新是推動永續發展願景的核心關鍵(STI for SDGs),透過科學(Science)、技術(Technology)、創新(Innovation)三項STI指標以落實各國永續發展目標(Sustainable Development Goals,簡稱SDGs)。又為達成科研創新推動永續發展目標,必須建立技術促進機制(Technology Facilitation Mechanism, TFM), TFM主要透過聯合國成員國、民間社會、私營部門、科學界及其他利益相關方間的經驗分享與合作,由三部分組成包括:聯合國跨機構任務小組(Inter-Agency Task Team, IATT),科學、技術、創新促進永續發展目標多方利害關係人論壇(Multi-stakeholder Forum on science, technology and innovation for the sustainable development Goals, STI Forum),線上平台(online platform)。 其中,聯合國跨機構任務小組(IATT)於2019年6月擬定的「科學、技術和創新促進永續發展目標路線圖(Science, Technology and Innovation for SDGs Roadmaps, STI for SDG Roadmap)」,邀請各國參與試點計畫,協助國家檢視現有科研創新政策需求、掌握未來科研發展趨勢與可能面臨的挑戰與機會,乃協助政府決策的科技前瞻支援工具,藉此達成STI for SDGs科研創新政策與永續發展目標間之平衡。關於國家科研創新路線圖規畫方法論,可以區分為基礎(Foundation)、調適(Adaptation)、整合(Integration)三部分:盤點各國現有科研創新政策需求,歸納與SDGs間落差;嘗試將SDGs理念注入政策目標,建構符合SDGs的科研創新規範與政策監管標準;運用科技前瞻方法掌握未來發展趨勢,研擬對策並面對挑戰。
新加坡網路安全局發布人工智慧系統安全指南,以降低AI系統潛在風險新加坡網路安全局(Cyber Security Agency of Singapore, CSA)於2024年10月15日發布人工智慧系統安全指南(Guidelines on Securing AI Systems),旨在強化AI系統安全,協助組織以安全之方式運用AI,降低潛在風險。 該指南將AI系統生命週期分成五個關鍵階段,分別針對各階段的安全風險,提出相關防範措施: (1)規劃與設計:提高AI安全風險認知能力,進行安全風險評估。 (2)開發:提升訓練資料、模型、應用程式介面與軟體庫之供應安全,確保供應商遵守安全政策與國際標準或進行風險管理;並辨識、追蹤及保護AI相關資產(例如模型、資料、輸入指令),以確保AI開發環境安全。 (3)部署:適用標準安全措施(例如存取控制、日誌記錄),並建立事件管理程序。 (4)運作與維護:持續監控AI系統的輸入和輸出,偵測異常與潛在攻擊,並建立漏洞揭露流程。 (5)壽命終期:應根據相關行業標準或法規,對資料與模型進行適當之處理、銷毀,防止未經授權之存取。 CSA期待該指南發布後,將有助於預防供應鏈攻擊(supply chain attacks)、對抗式機器學習攻擊(Adversarial Machine Learning attacks)等安全風險,確保AI系統的整體安全與穩定運行。