人工智慧即服務(AI as a Service, AIaaS)

  人工智慧即服務(AIaaS)之定義為由第三方提供人工智慧(AI)外包服務,其可使個人和公司基於各種目的進行AI相關實驗,同時毋須於初期即大規模投資或承受高度風險。著名之四大AIaaS供應商為Amazon AWS雲端運算服務、Microsoft Azure 雲端運算平台與服務、Google雲服務、以及IBM雲服務。

  AIaaS之優點主要有:(1)降低成本:一般公司無須投資軟體、硬體、人員、維護成本以及不同任務之修改成本,AIaaS供應商可供應不同之硬體或機器學習供公司嘗試運用。(2)即用性:AIaaS供應商提供之AI服務為即用性,無須太多專家介入修改即可使用。(3)可擴展性:可由較小之項目開始試驗,逐步擴張調整服務,因此具有戰略靈活性。然而,AIaaS亦有以下潛在缺點:(1)降低安全性:公司必須交付大量資料給AIaaS供應商,因此資料之機密保護與預防竄改即為重要。(2)增加依賴度:若發生問題時,必須等待AIaaS供應商進行處理。(3)降低透明度:由於是即用性之AI服務,對於內部演算法之運作則屬於未知之黑盒子領域。(4)限制創新:因AIaaS供應商所供應之AI服務需一定程度之標準化,因此限制公司創新發展之可能。

本文為「經濟部產業技術司科技專案成果」

相關連結
※ 人工智慧即服務(AI as a Service, AIaaS), 資訊工業策進會科技法律研究所, https://stli.iii.org.tw/article-detail.aspx?d=8269&no=67&tp=5 (最後瀏覽日:2025/11/28)
引註此篇文章
你可能還會想看
日本首相頒布「2017智慧財產推動計畫」,揭示國家推動三大基礎政策面向

  日本首相安倍晉三於2017年5月16日在官邸舉行智慧財產戰略本部(知的財産戦略本部)會議,並正式頒布「2017智慧財產推動計畫(知的財産推進計画2017)」。為因應大數據(ビッグデータ)、人工智慧(人工知能)等相關先進科技議題,透過調整產官學資源,培育地方中小企業智慧財產基礎認知,保護高附加價值農產品品種,振興觀光及影視等文化產業,提昇國家綜合競爭力,構築第4次產業革命(society5.0)之基礎。該會議中,所發表「2017智慧財產推動計畫」之三大基礎政策面向分別為: 一、建構第4次產業革命之智慧財產系統 (一) 充分利用、活用資訊及人工智慧以強化產業競爭力: 制訂資訊利用契約指引(ガイドライン)。 修正不正競爭防止法(資料不當取得禁止等)。 著作權法之修正(對於權利柔軟性限制之規定)。 AI學習模型(AI学習済モデル)專利。 (二)智慧財產系統基礎之準備: 強化證據蒐集程序。 創設ADR制度(Alternative Dispute Resolution、日文:標準必須特許裁定)。 (三)推動引領全球之智慧財產制度及相關標準化: 推動全面化的智慧財產管理制度(賦予智慧財產權之資料及標準等)。 活用國立研究開發法人之標準及其人才之培育。 二、活用智慧財產之潛力,推動區域活絡與發展 (一)積極活用強化農林漁業、食品業等智慧財產: 充實地理標示(GI)或植物品種,於國內外之保護及輔導體系。 制訂國家農林漁業優勢的標準(JAS)。 推動活用資訊之智慧農業。 (二)活用地方中小企業智慧財產,並推廣產學及產業間之互助: 啟發中小企業智慧財產意識,支援智慧財產海外之推廣。 產學攜手之橋接,並支援事業化。 (三)每一位國民都是智慧財產人才,推動智財教育: 充實智慧財產教育之新指導要領。 智慧財產教育振興聯盟課程與教材之開發。 建立地方性聯盟。 三、2020年大放異彩之日本 (一)海外推廣和產業基地之加強: 「酷JAPON官民共同營造平台」、「地方版酷JAP」之基礎建設及相互合作。 人才之育成、教育機構的合作。 (二)振興電影產業: 強化中小企業公司製作之支援及資金調動多樣化,及其海外之發展。 成s立公私部門改善攝影環境之聯絡會議。 (三)構築資料庫:設立跨部門之窗口,在產官學共同協助下活用研究成果、及商業化。   這個推動計畫乃是與「總合科學技術革新會議(総合科学技術・イノベーション会議)」及「IT總合戰略總部(IT総合戦略本部)」等共同合作,並結合「資訊利用促進基本計畫(官民データ活用推進基本計画)」(以「科學技術基本計畫」、「科技創新綜合戰略(科学技術イノベーション総合戦略)」、「資訊利用促進基本法(2016第103號法律)」等為基礎所發展的新計畫),在智慧財產戰略總部的主導下進行推動,積極穩健的落實智慧財產價值之保護、智財潛力活用及地方革新推動、日本文化之集結及向世界傳達日本的新文化價值等三大目標,以達到國家的發展戰略中,智慧財產戰略政策之最大使命。

澳洲法院判決BRCA1基因專利部分無效

  澳洲高等法院(澳洲的最高司法機關)在10月7日時做出重要判決,認為單純從人類基因體分離出來的基因序列,不足以作為專利的申請標的。本案的原告是一名69歲曾罹患乳癌的女士,他向法院起訴請求法院宣告Myriad 基因公司所擁有的BRCA1基因專利中部分的專利範圍(claim)無效。BRCA1基因的突變(mutation)或特定的表型被認為與乳癌及卵巢癌的發生機率有關。在先前的審級,法院都判決被告勝訴,但高等法院推翻了先前的見解,以7票贊成0票反對的比數\判決原告的上訴有理由,Myriad基因公司的專利無效。本案由首席法官連同其餘三位法官提出多數意見,另外有兩份協同意見。   本案的主要爭點在於系爭專利是否符合澳洲1990年專利法(Patents Act 1990)中,對專利應屬於一種「生產方式」(manner of manufacture)的規定。多數意見認為系爭的專利範圍只是BRCA1基因的序列,這些資訊並非由人類所「製造」,而僅是由人類所辨別。因此這無法被視為是一種生產的方式,不符合專利法的相關要求。若要將其視為生產方式,則需要進一步擴張生產方式的概念範圍,不適合由法院進行判斷。同時法院認為這個專利可能造成寒蟬效應,使得與BRCA1相關的分離技術變得過於昂貴或形成事實上的壟斷狀態,也與專利法希望促進發明的初衷不符。最後,法院在確認澳洲對於是否應承認此類專利並無國際法上的義務後,宣告此專利無效。   澳洲的學界對此判決表示歡迎,認為此判決將使醫療人員執行職務時免於侵犯智慧財產權的恐懼。但澳洲的生技產業則認為這個判決可能會打擊相關的研究,造成負面影響。澳洲法院的判決與美國先前的判決見解相當類似,同時該判決也可能對於其他國家的類似案件發生影響。例如在加拿大的一個與罕見心臟疾病基因有關的官司,就很可能會受到本判決的影響也宣布該基因專利無效。

美國聯邦巡迴上訴法院就Myriad案判決人體基因具可專利性

  2011年7月29日美國聯邦巡迴上訴法院針對Myriad Genetics公司之單離去氧核糖核酸(isolated DNA)專利無效上訴案作出判決,認定人體基因具有可專利性。   本案緣起於Myriad Genetics公司利用單離DNA BRCA1及BRCA2兩項基因,發展出一套乳癌風險檢測技術,並成功取得7項專利。未料2009年時,美國公民自由聯盟(American Civil Liberties Union,ACLU)及美國公共專利基金會(Public Patent Foundation,PUBPAT)以「授予單離DNA專利權係違反專利法第101條規定」為由,向紐約南區聯邦地方法院提起確認專利無效之訴,並獲致勝訴判決後,全案便上訴至聯邦巡迴法院。   美國專利法第101條(35 U.S.C §101)雖規定:「任何人發明或發現新而有用的方法、設備、製品或物之組合,或新而有用的改良,皆可依本法所定條件取得專利。」但標的若屬自然產物(product of nature)者,則不應授予專利。因此,本案關鍵問題在於:單離DNA是否屬於自然產物?   針對此一問題,巡迴法院以1887年聯邦最高法院於Hartranft v. Wiegmann案中所闡明的「人為介入(human intervention)是否已賦予發明物與自然產物明顯不同的特質」原則為判斷標準,認定單離DNA雖取自於原生DNA(native DNA),但其經化學處理後可釋放出特定分子,已與人體內之原生DNA有顯著不同,故具有可專利性。此外,法院更指出,美國專利局(The US Patent and Trademark Office,USPTO)自80年代迄今已釋出40,000件以上與DNA分子相關之專利,其中有20%為人類基因,此種長年行政慣例即便有誤,亦應由國會加以變更,而非法院。   本案受矚目之處,在於Myriad公司上訴時,美國司法部即透過法庭之友建議書(friend of the court briefs),向巡迴法院表明其否認人類基因具有可專利性的立場,因此本案判決結果等同於對司法部見解之否決。美國生技業者則認為單離基因專利(isolated gene patent)是生技產業的基石,此判決結果符合專利局一貫的專利政策,而此政策正是過去催生美國生技產業的推手;惟外界預料本案極可能再上訴至聯邦最高法院,屆時將對美國生技產業造成何種影響,值得持續觀察。

德國聯網車輛駕駛策略

  德國聯邦政府目標擬定於2020年實現高度自動化駕駛,為達成自動駕駛目標,車聯網(Connected driving)及智慧交通系統(Intelligent transport systems)技術成為必要發展工作項目。車聯網即透過無線通訊技術,使車輛間(Vehicle-to-Vehicle, V2V)或車輛對基礎設施 (Vehicle-to-Infrastructure, V2I)等彼此交換訊息,或是將行車資訊傳輸到伺服器,並透過資訊網路平臺將資料整合利用,並依不同功能需求進行有效監控管理和提供綜合服務。未來,可預見道路使用者的個別交通資訊的質與量將大幅提升,無論是部份自動駕駛或高度自動駕駛,將產生龐大資料量,故系統需要即時迅速的運算能力。例如,前方一旦發生車禍事故,必須通知後方自動模式駕駛車輛即時減緩速度,並適時轉由駕駛人員介入操控。   自動化及車聯網駕駛發展係為跨領域之問題,聯邦政府即針對五大領域問題:基礎設施、法規、創新研發、聯網化、資訊安全及資料保護,提出一連串作法及措施,確保德國汽車產業能保持領先地位。   我國資通訊及汽車零件產業具備技術相對優勢,然應就適合我國車聯網之實際需求發展,促進相關產業創新應用,並利用我國產業優勢與國際接軌,讓台灣在車聯網的發展中取得先機。

TOP