Horizon Europe

  Horizon Europe為歐盟2021-2027年之科技研發架構計畫。科技研發架構計畫(Framework Programmes for Research and Technological Development,依不同期別縮寫為FP1-FP8)為全球最大型的多年期科研架構計畫,今期之Horizon 2020已進入尾聲,2021年起所實施的歐盟科研架構計畫──FP9正式命名為「Horizon Europe」。

  為打造歐盟成為創新市場先鋒,延續Horizon 2020計畫成效,Horizon Europe重視投資研發與發展創新,包含強化歐盟的科學與技術基礎、促進歐洲創新能力,以及永續歐洲社會經濟的模式與價值。

  Horizon Europe發展方向分為三大主軸,分別為:

  1. 卓越科學(Excellent Science):透過歐洲研究理事會(European Research Council, ERC)、新居禮夫人人才培育計畫(Marie Skłodowska-Curie Actions, MSCA)和研究基礎設施(Research Infrastructures)加強歐盟科學領導力。
  2. 全球挑戰與產業競爭力(Global Challenges and European Industrial Competitiveness):此主軸再分別發展6個子題,以應對歐盟和全球政策並加速產業轉型。該6個子題分別為(1)健康;(2)文化與創造力;(3)社會安全;(4)數位與太空產業;(5)氣候、能源與交通;(6)糧食、生物經濟(Bioeconomy)、自然資源、農業與永續環境。
  3. 創新歐洲(Innovative Europe):促進、培育和部署市場創新,維護友善創新環境之歐洲生態系統(European ecosystems)。

  此外,Horizon Europe擬把實驗階段中具備高潛力和前瞻性的技術帶入市場,轉以任務導向協助新創產業設立,推動跨事業多方整合。

本文為「經濟部產業技術司科技專案成果」

相關連結
相關附件
你可能會想參加
※ Horizon Europe, 資訊工業策進會科技法律研究所, https://stli.iii.org.tw/article-detail.aspx?d=8288&no=86&tp=1 (最後瀏覽日:2026/02/10)
引註此篇文章
你可能還會想看
什麼是「先進製造夥伴2.0」(Advanced Manufacturing Partnership 2.0, AMP2.0)?

  為重塑美國先進製造技術領導地位,發展創新研發與就業,美國總統歐巴馬陸續啟動先進製造國家戰略計畫、先進製造夥伴計畫(Advanced Manufacturing Partnership, AMP)與國家製造創新網絡(National Network of Manufacturing Innovation, NNMI)等框架計畫,並於2014年10月由美國總統執行辦公室和科技顧問委員會發布「先進製造夥伴2.0」(Advanced Manufacturing Partnership 2.0, AMP2.0)。   其中新版的先進製造夥伴計畫,除續行原先之計畫目標,例如:對於「研發技術政策形成」、「區域創新機構」與「全國製造創新網絡」等要項外,「先進製造夥伴2.0」框架強調「製造業資源如何有效匯集」,另透過「組織角度設計」、「法制環境建構」與「商業化運用促進」等面向提出具體執行建議。

CAR-T細胞治療產品Yescarta美國專利侵權訴訟逆轉勝,CAFC認定專利不符書面說明要件而無效

  Gilead Sciences之子公司Kite Pharma(以下簡稱Kite)所推出之Yescarta®(Axicabtagene Ciloleucel)為治療復發型或難治型瀰漫性大B細胞淋巴瘤(Diffuse Large B-Cell Lymphoma, DLBCL)之CAR-T細胞治療產品,其為美國FDA第二個核准上市之CAR-T產品。   上述產品於2017年獲美國FDA核准上市後,Juno therapeutics公司隨即於美國加州中區聯邦地院起訴Kite,主張Yescarta侵害Juno therapeutics之美國7,446,190號專利「編碼嵌合T細胞受體之核酸(Nucleic acids encoding chimeric T cell receptors)」(以下簡稱190專利),2019年陪審團認定Kite成立專利侵權,裁定損害賠償額為7.78億美元;於2020年法院進一步認定Kite有蓄意侵權行為,再判定需增加50%之損害賠償金,使損害賠償總額超過11億美元。   本案上訴後,美國聯邦巡迴上訴法院(US Court of Appeals for the Federal Circuit, 以下簡稱 CAFC)於2021年8月26日推翻原審判決,認定190專利不符書面說明(Written Description)要件而無效。CAFC認為190專利請求項所請求之單鏈可變區片段抗體(single-chain variable fragment, scFv)結合部涵蓋過廣,包括可結合「任何」標的之「任何」scFv,惟其說明書未能提供其中之代表性物種(species)、或界定其共通結構特徵,於說明書中僅揭露可結合兩種不同標的之兩種scFv作為實施例,但未能說明此二物種如何、或是否能夠代表其所請求的整個上位之屬(genus)。CAFC指出,若要滿足書面說明要件之要求,說明書應揭露與代表性數量之標的結合之特定scFv物種,Juno雖提出專家證詞主張此二scFv實施例已具代表性,惟CAFC仍認為該證詞過於籠統而未能解釋何種scFv將與何種標的結合。CAFC指出,書面說明要件之目的在於確保專利排他權範圍不會超出發明人記載於說明書中之貢獻範圍,190專利發明人證稱其申請發明時只使用過說明書所載之兩個scFv實施例,且說明書未提供確認何種scFv將結合至何種標的之方法與指導,但190專利卻請求可與任何標的結合之scFv,因此,190專利之揭露內容未能證明發明人擁有結合至各種選定標的之所有可能scFvs,無法滿足書面說明要件之要求。   醫藥專利以上位請求項(genus claim)尋求保護時,可能因說明書記載內容不容易滿足書面說明與可據以實施(Enablement)要件而受到挑戰。除本案外,美國近期亦有數件醫藥專利因不符書面說明要件與可據以實施要件而被宣告無效,如Amgen Inc. v. Sanofi(Fed. Cir. 2021)、Idenix Pharmaceuticals LLC v. Gilead Sciences Inc.(Fed. Cir. 2019)、Enzo v. Roche(Fed. Cir. 2019),未來醫藥專利以上位請求項尋求保護是否會變得更加困難,值得繼續觀察。

臺北高等行政法院103年度訴更一字第120號判決對健保資料作目的外運用之態度

英國資訊委員辦公室提出人工智慧(AI)稽核框架

  人工智慧(Artificial Intelligence, AI)的應用,已逐漸滲透到日常生活各領域中。為提升AI運用之效益,減少AI對個人與社會帶來之負面衝擊,英國資訊委員辦公室(Information Commissioner’s Office, ICO)於2019年3月提出「AI稽核框架」(Auditing Framework for Artificial Intelligence),作為確保AI應用合乎規範要求的方法論,並藉機引導公務機關和企業組織,評估與管理AI應用對資料保護之風險,進而建構一個可信賴的AI應用環境。   AI稽核框架主要由二大面向所構成—「治理與可歸責性」(governance and accountability)以及「AI特定風險領域」(AI-specific risk areas)。「治理與可歸責性」面向,係就公務機關和企業組織,應採取措施以遵循資料保護規範要求的角度切入,提出八項稽核重點,包括:風險偏好(risk appetite)、設計階段納入資料保護及透過預設保護資料(data protection by design and by default)、領導管理與監督(leadership management and oversight)、政策與程序(policies and procedures)、管理與通報架構(management and reporting structures)、文書作業與稽核紀錄(documentation and audit trails)、遵循與確保能力(compliance and assurance capabilities)、教育訓練與意識(training and awareness)。   「AI特定風險領域」面向,則是ICO特別針對AI,盤點下列八項潛在的資料保護風險,作為風險管理之關注重點: 一、 資料側寫之公平性與透明性(fairness and transparency in profiling); 二、 準確性(accuracy):包含AI開發過程中資料使用之準確性,以及應用AI所衍生資料之準確性; 三、 完全自動化決策模型(fully automated decision making models):涉及人類介入AI決策之程度,歐盟一般資料保護規則(General Data Protection Regulation, GDPR)原則上禁止無人為介入的單純自動化決策; 四、 安全性與網路(security and cyber):包括AI測試、委外處理資料、資料重新識別等風險; 五、 權衡(trade-offs):不同規範原則之間的取捨,如隱私保護與資料準確性; 六、 資料最少化與目的限制(data minimization and purpose limitation); 七、 資料當事人之權利行使(exercise of rights); 八、 對廣泛公共利益和權利之衝擊(impact on broader public interests and rights)。   ICO將持續就前述AI特定風險領域,進行更深入的分析,並開放公眾討論,未來亦將提供相關技術和組織上之控制措施,供公務機關及企業組織進行稽核實務時之參考。

TOP