2015年9月25日,聯合國發布「2030永續發展議程(2030 Agenda for Sustainable Development)」,強調科研創新是推動永續發展願景的核心關鍵(STI for SDGs),透過科學(Science)、技術(Technology)、創新(Innovation)三項STI指標以落實各國永續發展目標(Sustainable Development Goals,簡稱SDGs)。又為達成科研創新推動永續發展目標,必須建立技術促進機制(Technology Facilitation Mechanism, TFM), TFM主要透過聯合國成員國、民間社會、私營部門、科學界及其他利益相關方間的經驗分享與合作,由三部分組成包括:聯合國跨機構任務小組(Inter-Agency Task Team, IATT),科學、技術、創新促進永續發展目標多方利害關係人論壇(Multi-stakeholder Forum on science, technology and innovation for the sustainable development Goals, STI Forum),線上平台(online platform)。
其中,聯合國跨機構任務小組(IATT)於2019年6月擬定的「科學、技術和創新促進永續發展目標路線圖(Science, Technology and Innovation for SDGs Roadmaps, STI for SDG Roadmap)」,邀請各國參與試點計畫,協助國家檢視現有科研創新政策需求、掌握未來科研發展趨勢與可能面臨的挑戰與機會,乃協助政府決策的科技前瞻支援工具,藉此達成STI for SDGs科研創新政策與永續發展目標間之平衡。關於國家科研創新路線圖規畫方法論,可以區分為基礎(Foundation)、調適(Adaptation)、整合(Integration)三部分:盤點各國現有科研創新政策需求,歸納與SDGs間落差;嘗試將SDGs理念注入政策目標,建構符合SDGs的科研創新規範與政策監管標準;運用科技前瞻方法掌握未來發展趨勢,研擬對策並面對挑戰。
本文為「經濟部產業技術司科技專案成果」
美國專利商標局(USPTO)於2020年10月27日發布「發明AI:由美國專利觀察AI普及情形」(Inventing AI: Tracing the diffusion of artificial intelligence with U.S. patents)智財資料分析報告,本報告分析2002年至2018年共16年間美國AI專利之申請資料,發現在AI專利申請數量由3萬件成長至6萬件,成長幅度為100%,而在全體專利當中AI相關專利所占比率,也由原本的9%成長至接近16%,顯示在AI技術研發創新與普及率的顯著成長。 報告指出,自1950年圖靈(Alan Turing)提出「機器能否思考?」問題以來,現今AI技術的發展已經達到連圖靈也會讚嘆的水準,AI技術在發明領域的重要性益發提升,活躍於AI領域的發明人占全體專利權人的比率也從1976年的1%提升到2018年的25%,在組織的發明專利上也呈現相同的趨勢;除了美國銀行(Bank of America)、波音公司(Boeing)以及奇異電子(General Electric)之外,前30大頂尖的AI公司都來自資通訊領域,其中佔據首位者為擁有46,752項專利的IBM,其次為擁有22,076項專利的微軟以及10,928項專利的Google,而AI技術的應用領域也更加多元,並且與在地產業做結合,例如應用在奧勒岡州的健身訓練與設備以及北達科他州的農業上。 USPTO指出,經由專利資料分析顯示AI技術的發展不僅有顯著的成長,並逐漸與在地產業結合、落實在不同產業領域的多元應用,AI對於產業的影響力將不亞於電力或半導體,隨著AI領域發明人的顯著成長,未來將有更多AI技術在各領域的應用出現,而擴大AI影響力的關鍵在於發明者與公司能否成功將AI納入現有或新產品的功能、流程或服務之中。
歐盟執委會發布歐洲資料戰略歐盟執委會於今(2020)年2月19日發布「歐洲資料戰略」(A European strategy for data),宣示繼前一期「歐洲數位單一市場」戰略的基礎下,將於新一期戰略建立一個真正的歐洲資料空間及資料單一市場,以解鎖尚未被利用的個人資料及非個人資料,使資料能夠在歐盟內部、跨部門和跨領域自由流動,並使所有公部門、公民,或新創、中小、大企業都可存取資料及利用。 本戰略就此提出四大戰略行動,重點如下: 1、資料存取(Data Access)和利用的跨部門治理框架 (1)2020年第四季提出「共同歐洲資料空間」(common European data spaces)的治理立法框架:A.加強共同資料空間及其他跨公私部門資料利用方式的治理機制;B.於GDPR基礎下,基於科學研究目的利用敏感個資時,能較容易決定可以由誰如何利用哪些資料;以及使個人更容易同意其個資的公益目的利用。 (2)2021年第一季通過開放資料指令(Directive (EU) 2019/1024)的高價值資料集「施行細則/執行法」(implementing acts)。 (3)2021年提出《資料法》(Data Act)草案促進企業對政府的資料共享;以及解決現今企業間資料共享常遇到的障礙,例如多方合作建置資料時(如物聯網),釐清各方的資料使用權限及各自的法律責任。 2、推動方式:投資歐洲資料空間重大項目,以加強歐洲處理和使用資料的基礎設施及能力、加強資料互通性等。 3、加強個人資料管理:在GDPR第20條的可攜權(portability right)基礎下,於《資料法》賦權個人更能控制自己被政府及企業所掌握的個資,並使個人能自己決定由誰存取和利用。另外,將由數位歐洲計畫開發「個人資料空間」。 4、促進戰略性產業領域及公益領域的共同歐洲資料空間:歐盟執委會將協助建立包含「共同歐洲工業(製造)資料空間」(Common European industrial (manufacturing) data space)在內的9種領域共同歐洲資料空間,本戰略亦於附件介紹各領域的資料共享基礎背景。 另外,雖非戰略主軸,但文件內容及新聞稿皆提及,執委會將於2020年第四季提出《數位服務法》(Digital Services Act),為所有企業進入資料單一市場建立明確的規範、審查現有政策框架、加強線上平台的責任及保護基本權利。 總而言之,本戰略所欲推展的各項行動,將促進公民、企業組織、研究人員和公部門能更輕易的獲得和利用彼此的資料,進而確保歐盟成為資料驅動社會的模範和領導者。
新加坡科技與研究局針對未來工廠提出研究規劃及方向新加坡科技與研究局(Agency for Science, Technology and Research)於2017年7月26日提出未來工廠(Toward the factories of the future)概念及相關研究方向,自動化(Automation)、機器人(robotics)、先進電腦輔助設計(advanced computer-aided design)、感測和診斷技術(sensing and diagnostic technologies)將徹底改變現代工廠,可製造的產品範圍廣泛,從微型車乃至於飛機皆可生產。積層製造(Additive Manufacturing),又稱3D列印(3D printing),可使用單一的高科技生產線來創造許多不同的產品項目,而不需要傳統大規模生產的設計限制和成本,伴隨未來高效能電腦和感測技術之進步,積層製造速度也會隨之加快。而智慧工廠(smart factories)將與物聯網(IOT)、雲端計算(cloud computing)、先進機器人(advanced robotics)、即時分析(real-time analytics)與機器學習(machine learning)等技術與積層製造技術結合,將大為提升生產速度及產量。 為加速及改善積層製造的製程,最重要的方法之一,是使用材料物理學的基本原理來模擬製造過程,而近期更引進跨學科之研究,「模擬」最終產品化學成分和機械性能的微觀結構。因積層製造是一個複雜又困難的過程,透過變化既有規則之模擬(Game-Changing simulations),若建立完成模型且模擬成功,將成為積層製造的殺手級技術。在未來的五到十年,我們將看到更多的零件從積層製造技術生產出來,而且這種技術有機會成為未來工廠的生產基礎。由於現行材料及製造流程與機器必須配合一致,些許的差異皆會生產出不同品質之產品,故未來積層製造工廠的結果穩定重現性(repeatability)和標準化(standardization),將是產品商業化的主要障礙與挑戰。
加拿大運輸部發布自駕系統測試指引2.0,為建立全國一致的實驗準則加拿大運輸部(Transport Canada)於2021年8月6日發布「自駕系統測試指引2.0」(Guidelines for Testing Automated Driving Systems in Canada Version 2.0),建立全國一致的最佳實踐準則,以指導配有自動駕駛系統(Automated driving systems, ADS)之車輛能安全地進行實驗。根據從國內外測試活動中取得的經驗及教訓,對安全措施進行更新,內容包括: 一、實驗前的安全考量:探討在開始實驗之前應考量的安全注意事項,包括(1)評估實驗車輛安全性、(2)選擇適當的實驗路線、(3)制定安全管理計畫、(4)安全駕駛員與培訓、(5)民眾溝通及提高意識、(6)確保當地執法單位及緊急應變人員瞭解實驗活動。 二、實驗中的安全管理:討論在實驗過程中應重新檢視的安全考量,包括(1)使用分級方法進行測試、(2)調整安全管理策略、(3)制定事件和緊急應變計畫與步驟、(4)安全駕駛員的角色及職責、(5)遠端駕駛員和其他遠端支援活動的安全考量、(6)在沒有安全駕駛員的情況下進行實驗、(7)與其他道路使用者的安全互動、(8)與乘客的實驗、(9)定期報告及資訊共享。 三、實驗後應注意之事項:在結束其測試活動後應考量的因素,包括報告實驗結果、測試車輛及其部件的出口或處置。如果測試車輛是臨時進口的,則在測試完成後可能需要將其銷毀或捐贈。 該測試指引僅適用於臨時實驗,而非永久的市場部署,加拿大運輸部將繼續更新該測試指引及其他文件和工具,以支持加拿大道路使用者的安全。