日本外包法,正式名稱為外包價金給付遲延等防止法(下請代金支払遅延等防止法,又簡稱下請法),其制定目的在於確保大型企業外包其業務予中小型企業時之交易公正性,防止外包業者濫用其相對於承包業者之優勢地位,並保護承包之小型業者的利益,而該法的主管機關為公平交易委員會(公正取引委員会)。
依該法規定,於以下情形有本法之適用:(1)業者發包委託承包業者製造、修理物品與委託承包商提供該法授權行政命令訂定列舉的資訊成果產品(製作程式)或服務(運送、將貨品保管在倉庫、資訊處理),且發包之大型企業資本額 3億日圓以上、承包之小型企業資本額3億日圓以下,或發包企業資本額於3億元以下1000萬日圓以上、承包企業資本額在1000萬日圓以下時;或(2)業者發包委託承包業者作成非屬上述行政命令所列舉之資訊成果產品(如製作電視節目或廣告、設計商品、產品之使用說明書等)、或提供非屬行政命令列舉之服務(如維修建物或機械、提供客服中心服務等),且發包業者資本額5000萬日圓以上、承包業者資本額在5000萬日圓以下,或發包業者資本額在5000萬日圓以下1000萬日圓以上、承包業者資本額於1000萬日圓以下。
符合上開法定要件時,發包業者應訂定契約價金之給付期日,不得遲延給付價金,若給付遲延則有義務支付遲延之利息等,同時禁止發包業者拒絕受領承包業者交付的履約標的,禁止無故減少契約價金、退貨、或對承包業者採取報復性措施。若發包業者違反上述規定,則由日本中小企業廳或該發包業者之事業主管機關請求日本公平交易委員會(公正取引委員会)採取相應措施,該會則得據此針對該違反行為向發包業者作出書面勸告,同時對外公開該發包業者之公司名稱、其違反行為之事實概要、以及勸告內容的概要。此外,為防止口頭約定造成日後衍生交易糾紛,發包業者於下單時,應以書面明確約定並記載例如承包業者的履約標的、契約價金數額等法定應記載事項,並在下單後立即交付該書面予承包業者,如違反,得對該發包業者課予50萬日圓以下罰金。
本文為「經濟部產業技術司科技專案成果」
為強化智慧聯網資通訊技術之整合,推動防救災之智慧化,美國國會眾議員Gus M. Bilirakis於2013年10月10日提出「整合公共示警和警告系統現代化法案」(Integrated Public Alert and Warning System Modernization Act of 2013, H.R. 3283),該法案修正「2002年國土安全法」(Homeland Security Act of 2002)第5章,加入了第526條款,進行國家公共示警和警告系統之現代化工作。 「整合公共示警和警告系統現代化法案」要求聯邦政府應積極進行相關可經驗證和測試研發技術之使用可行性,並強化公共示警和警告之傳遞與傳播,關於預期達成之目標則為: (1) 增強更高安全性、可靠性,並強化聯邦政府的警報和預警能力; (2) 快速預警傳播效率; (3) 改善通知遠程位置之能力; (4) 增強定位地理目標能力,以及 (5) 傳遞多種通信方式提供警報和預警的能力,其也規範聯邦政府應制訂調整政府之共同警報和預警協議、標準、名詞術語定義,以及公共警報和預警系統的操作流程。法案更採用多元化傳遞機制,來傳播國土安全資訊和其他警告資訊給公眾,從而觸及最多數人,聯邦政府更應加強研發及採用各種未來科學技術及整合應用。 其次,法案乃要求應設立「整合公共警報和預警系統諮詢委員會」,除了聯邦政府及地方政府官員代表須參加外,並應納入民間產業參與等意見諮詢,特別是明訂應結合: (1) 通信服務提供商; (2) 系統、設施、設備,並提供通訊服務能力之廠商、開發者和製造商; (3) 第三方服務者 (4) 傳播產業; (5)手機產業; (6) 寬頻產業; (7) 衛星產業等。並且,為了促進地方和整體區域合作,提倡公私夥伴合作關係,強化社區防範和因應,乃特別強調「商用行動通訊服務提供者」(Participating Commercial Mobile Service Provider)之參與和角色定位,依定義,乃指稱「被選定自願性參與負責公共警示情報傳遞之商用行動通訊服務提供者」。 截至2014年4月底,本法案已在眾議院委員會待審,相關立法趨勢與發展當持續關注之。
美國衛生及公共服務部提出雲端服務適用健康保險可攜與責任法之相關指引美國醫療產業使用境內或境外雲端服務(Cloud Services)急速成長,導致「健康保險可攜與責任法」(Health Insurance Portability and Accountability Act,以下簡稱HIPAA)規範下之「適用機構」(Covered Entities)與其「商業夥伴」(Business Associate),對於雲端服務業者如何適用HIPAA感到疑惑。因此,衛生及公共服務部民權辦公室(Department of Health and Human Services, Office for Civil Rights)於10月7日公布相關業者如何適用HIPAA之指引,以釐清爭議。 於該指引中,該部指出,雲端服務業者若替適用機構或是商業夥伴創造、接收、維護、傳送被HIPAA所保護之「資療資訊」(Protected Health Information),則該雲端業者就被視為HIPAA下規範之商業夥伴,原因在於該服務具有儲存與維護醫療資訊功能,非屬該法排除適用之「網路服務業者」(Internet Service Providers)資料傳輸服務類型。 該指引有幾大重點:首先,雲端服務業者如將該醫療資訊提供加密儲存服務,仍應盡到HIPAA中規範商業夥伴之責任。原因在於加密資料不足以保護HIPAA有關資訊安全章節所要求醫療資訊之「機密性、完整性和可用性」之相關規範。再者,雲端業者皆須與委託方簽署商業夥伴協議(Business Associate Agreements)。此外,使用雲端服務儲存資療資訊時,委託方皆能使用行動設備進入雲端儲存之醫療資料,但應建立合乎HIPPA所要求相關之安全措施。最後,HIPAA並未禁止將醫療資訊儲存至伺服器為於美國境外之雲端業者,但使用前應自行評估該資訊遭駭客攻擊之可能性。
美國參議院通過幹細胞研究加強法案,惟仍難逃被布希總統否決之命運美國參議院近日就是否開放聯邦經費挹注於胚胎幹細胞研究進行激辯,並於 17 日通過幹細胞研究加強法( Stem Cell Research Enhancement Act of 2005, HR 810) 及其他兩項亦涉及胚胎幹細胞研究的類似法案。其中最引人注目者為 HR 810 ,該法案允許以聯邦經費資助使用人工授精之剩餘胚或病患自願捐贈之胚胎,進行幹細胞研究。這些法案的通過顯示,美國參議院打算挑戰布希政府自 2001 年所立下禁止聯邦經費挹注於胚胎幹細胞研究的禁令。 其實早在去年五月,眾議院即以 238 票贊成、 194 票反對通過 HR 810 ,布希政府在眾議院通過 HR 810 後,隨即表示一旦本法在國會立法通過,將會動用否決權推翻此一法案。根據美國法律,法案唯有經參眾議院以三分之二以上多數通過,總統始不能否決之。日前參議院係以 63 票贊成、 37 票反對通過 HR 810 ,並未達三分之二多數通過,因此本法案未來恐難逃被布希總統否決的命運。白宮發言人業已表示,該法案強迫所有的美國納稅義務人出錢資助以故意破壞人類胚胎為基礎的研究行為,法案一旦送交總統,布希總統將會行使否決權,這將會是布希總統任內首度針對國會所通過的法案動用表決權。 儘管布希總統仍持一貫反對胚胎幹細胞研究的立場,不過,美國民眾卻有支持胚胎幹細胞研究的趨勢。一項最新民調顯示,每四名受訪者中,就有三名贊成將聯邦經費用於資助胚胎幹細胞的研究。隨著美國國會大選將於十一月中旬展開,預料胚胎幹細胞研究議題將會再度成為焦點。
美國著作權局發布AI著作權報告第三部分:生成式AI訓練-AI訓練是否構成合理使用?美國著作權局發布AI著作權報告第三部分:生成式AI訓練-AI訓練是否構成合理使用? 資訊工業策進會科技法律研究所 2025年06月04日 美國著作權局於2025年5月發布著作權與AI第三部分報告之預出版本 (Copyright and Artificial Intelligence Part 3: Generative AI Training pre-publication version)[1],該報告重點為生成式AI訓練資料與著作權之關係,彙整各方意見並分析現行法制之挑戰及修改方向,目前發布之版本為預出版本,該報告說明將於近期發布最終確認版,預期其結論與實質內容並不會有修改。 壹、事件摘要 美國著作權局自2023年起即開始對AI所引發之著作權法律及政策問題進行研究,同年8月著作權局發布著作權及AI諮詢通知(Comments on Artificial Intelligence Notice of Inquiry, NOI),徵集各界對AI著作權議題之意見,著作權局亦針對相關議題舉辦多場公聽會及研討會協助意見之蒐集[2]。NOI發布後蒐集到之意見經著作權局整理分析,於2024年7月起發布AI著作權報告,第一部分為數位仿造,第二部分於2025年1月發布為就AI作品之著作可保護性之分析,而同年5月所發布之第三部分則聚焦於生成式AI之訓練。 生成式AI於訓練過程可能大量使用受著作權保護之作品,此份報告針對訓練過程可能涉及之著作權問題進行分析,主要說明AI模型訓練過程中使用受著作權保護作品是否可構成合理使用。 貳、重點說明 一、生成式AI模型訓練及模型權重對重製權之侵害 使用受著作權保護作品進行AI模型訓練涉及著作權中之重製,除非開發者能提出授權或其他合理抗辯如合理使用等,否則可能對一項或多項著作權利構成初步侵權(Prima Facie Infringement)。AI開發者於模型訓練階段會進行多次作品複製,包含下載作品、於儲存媒介間轉換、將作品進行格式化或製作副本等[3],模型訓練過程中暫時複製之作品亦有可能因其存在於時間足夠而構成重製權之侵害[4]。 在特定情形下,模型權重(model weights)[5]之複製亦可能構成重製權之侵害。訓練過程可能使模型權重包含著作權作品,而若第三方複製了包含著作權作品之模型權重,即便其未參與模型之訓練,亦可能構成初步侵權[6]。若模型能在未經外部輸入之情形下產出與訓練範例相似之內容時,表示此範例必以某種形式存在於模型權重中,故此模型權重之複製極有可能侵犯著作重製權[7]。換言之,不僅開發者有可能因模型權重之複製侵害著作權人之權利,部署、使用等第三方若複製模型權重亦有可能構成對重製權之侵害。 著作權局指出,模型權重究竟是否會構成重製權或甚至衍生作品之侵權,須判斷該模型權重是否保留與作品受權利保護部分實質相似之內容,僅有在實質相似之情形下,模型權重之複製才可能構成侵權[8]。 二、合理使用 對著作權作品之合理使用可做為作品重製權的抗辯,著作權局於報告中就不同因素分析AI使用著作權作品進行訓練是否得主張合理使用。AI於訓練過程中會有多次複製行為,惟在判斷AI模型訓練是否為對作品之合理使用,仍須視整體使用情境進行判斷[9]。 (1) 作品轉化性須視模型目的及佈署判斷 報告中分析作品之轉化性(transformativeness)[10],AI訓練使用作品是否具有轉化性並非絕對,而是依據模型最終之功能及佈署有程度上之區別,須依個案判斷。若模型之訓練目的為用於研究或封閉系統,則該模型具高轉化性;若其目的是生成與訓練用作品實質相似之結果時,不具轉化性。多數模型之轉化程度會落在前述兩極端之中間,如模型使用特定類型之作品進行訓練,用以生成使用目的與原作相同之內容時,即便其生成內容未有實質相似,頂多僅為有限度之轉化(modestly transformative)[11]。AI開發商得於其系統設置防護措施,限制模型複製受著作權保護作品之節錄內容,使生成內容之目的與原作品不同,此措施能使模型訓練更具轉化性[12]。 有論者認為,使用受著作權保護作品進行AI模型訓練並非出於表達目的,且近似人類學習,因此實質上應是具有轉化性的,著作權局否定了前述兩種說法。報告中說明,語言模型於訓練時所吸收的內容包含文句、段落及文件之排列選擇,並非單純僅吸收其單字含意,且所生成之模型是被用作創造表達性內容,故不得謂AI模型為非表達性目的[13]。其次,針對人類學習觀點,報告首先闡明,學生基於學習目的亦不得以合理使用為由複製整本著作,因此人類學習並不得直接作為合理使用之抗辯。生成式AI之訓練能迅速分析並生成完美之作品,此非如同人類經學習後會產出具個別人格特質之結果,故著作權局不同意AI模型之訓練為與人類學習相同具有轉化性之論點[14]。 (2) 受著作權保護作品之表達性 AI訓練所使用之受著作權保護作品若具較高創作或表達性,如小說、電影等,其著作權比其他作品如電腦編碼等功能性作品更接近著作權之保護核心。而AI模型訓練來源多元,因此判斷上仍須視個案模型及作品而定。 (3) 使用作品之合理比例 AI模型訓練需大量複製受著作權保護作品,於判斷其複製比例是否合理時,係判斷模型訓練所複製之部分對於受著作權保護作品之數量及重要性使否合理[15]。作品使用之合理性,須考量重要性以及數量,若模型僅使用小部分作品做訓練,但該部分為著作權作品之核心部分,此使用並不一定合理。 在使用完整作品層面,生成式AI較一般搜尋引擎更不具合理性,生成式AI所提供之資訊並非僅限於其訓練資料庫中所複製作品資料。然而,許多生成式AI之訓練方式必須使用完整作品進行訓練,因此,著作權局指出,雖開發者使用完整作品進行訓練與合理使用相悖,但若其訓練具有轉化性目的(transformative purpose),並且有必要透過大量作品之訓練以提升模型效能時,則使用整部作品進行訓練可能被認為合理[16]。換言之,使用完整作品進行訓練合理與否須連同其使用必要性及訓練目的一併考量。 (4) 影響原作品之潛在市場或價值 報告中點出三項生成式AI訓練可能造成的市場危害。 A 銷售損失(lose sale):權利人因潛在消費者選擇AI複製創作取代原作,而失去收入。 B 市場稀釋 (market dilution):AI生成內容之速度以及規模對訓練資料中同類作品之市場造成稀釋風險,原作者將更難銷售其作品亦將使消費者更難找到真人創作之作品[17]。AI所生成風格相似之作品亦會導致市場稀釋,風格非為著作權所保障之方為,惟若AI生成與作品風格相似之內容,即便未有實質相似,但消費者可能因此難以分辨AI創作與真人作者,將使AI作品與原作者之作品於市場上直接競爭而影響原市場[18]。 C 喪失授權收入機會 (lost licensing opportunities):權利人本可就其作品於市場上有授權收入之機會,但因AI未經授權使用作品進行訓練而喪失該部分收入[19]。 三、 授權使用 對於AI自願授權之情形於近年越來越普遍,報告亦肯認自願授權之可行性,雖自願授權可行,且已有開發商開始實施,惟對於完全滿足AI產業之需求仍存有疑義[20]。該報告認為,即便現階段自願性授權仍為發展中之制度,但該制度確實能避免使用著作權作品之不確定性。著作權局認為應讓自願性授權制度於授權市場於無政府干預情形下繼續發展,若未來於特定類型作品中出現失靈情形時,再考慮進行擴大集體授權等干預措施[21]。 參、事件評析 AI訓練使用著作權保護作品是否可以合理使用作為抗辯為近年AI發展下著作權高度討論問題之一。目前美國各地法院中有40多件相關案件正在進行審理,然就此報告之結論觀之,其並未對AI訓練是否可作為合理使用給予統一解答,合理使用與否仍須視個案而定。如同報告結論所提及,AI訓練過程中,使用受著作權保護作品可能具有轉化性,但是否足以構成合理使用,仍須視其所使用之作品、來源以及目的等個案因素而定[22]。AI訓練於著作權仍存在一定程度之不確定性。 值得注意的是,雖報告並未明示AI訓練使否為合理使用著作權作品,惟其立場似乎更偏向有利於著作權利人。例如報告中於轉化性認定具有灰色地帶,開發商是否能主張合理使用仍需於後續由法院個案認定。此外,報告中提及市場稀釋理論,目前尚未有法院採用,對合理使用之認定較為嚴格,即使未有實質相似之生成內容亦有可能因影響市場競爭被視為非合理使用,可見該理論對著作權利人之權利保障。 同時著作權局亦正向看待產業界透過自願性授權進行作品訓練之方法,雖該制度於AI訓練上尚未為一完善制度,但確實地授權制度能同時促進產業發展並保護著作權[23]。目前實務上亦是以此種作法解決合理使用之困境,但授權制度仍有待市場持續發展完善制度以確保能符合AI訓練之需求。 美國著作權局之報告雖對AI使用著作權保護作品進行訓練進行分析及說明,惟其結論仍是認為判斷上需依照個案分析。目前國際上尚未有對AI合理使用之實際定論,自願性授權仍為產業界所使用之方法。我國著作權法亦未對AI訓練之合理使用有說明,國際上將會如何發展仍有待觀察。 資策會科法所創智中心致力於著作權相關科技法律研究,本中心將持續關注相關議題並更新動態。 本文為資策會科法所創智中心完成之著作,非經同意或授權,不得為轉載、公開播送、公開傳輸、改作或重製等利用行為。 [1]U.S. Copyright Office Copyright and Artificial Intelligence, Part 3: Generative AI Training pre-publication version, https://www.copyright.gov/ai/Copyright-and-Artificial-Intelligence-Part-3-Generative-AI-Training-Report-Pre-Publication-Version.pdf [2]U.S. Copyright Office, Copyright Office Issues Notice of Inquiry on Copyright and Artificial Intelligence, https://www.copyright.gov/newsnet/2023/1017.html (last viewed: 2025/05/19) [3]supra note 1, at 26. [4]Id. at 27. [5]AI模型之建立仰賴神經網,主要功能為將輸入資料轉換為輸出資料。神經網路之運作方式係透過大量於訓練過程中產生之參數進行運案,而該些參數即為「權重」(weights)。 [6]Id. at 28. [7]Id. [8]Id. at 30. [9]Id. at 36-37. [10]轉化性係指新作品加入新元素,具有與原作不同目的或性質,且以新表達、意義或訊息改造原作。並且新作品於市場上較不會取代原作。 [11]Id. at 46. [12]Id. [13]Id. at 47. [14]Id. at 48. [15]Id. at 54. [16]Id. at 60. [17]Id. at 65. [18]Id. at 65-66. [19]Id. at 66-67. [20]Id. at 85. [21]Id. at 106. [22]Id. at 107. [23]Id. 本文同步刊登於TIPS網站(https://www.tips.org.tw)