智慧財產權盡職調查(IP Due Diligence)

  智慧財產權盡職調查(Intellectual Property Due Diligence, IP DD),又稱智慧財產權稽核(IP Audits)。所謂盡職調查(Due Diligence, DD)係指:即將進入投資或購買交易前,投資者或其委託人透過事實證據所進行與投資或購買相關的評估。評估內容包含公司結構、財務狀況、業務、稅務、人力資源等,亦涵蓋有形資產與無形資產。其主要目的在於釐清該投資或購買是否存在潛在的法律風險。隨智慧財產權的概念愈來愈成熟,智慧財產權盡職調查也益發重要。智慧財產權盡職調查的內容常會包含:財產權(如:註冊地域、質押或保全情形)、授權或轉授權限制、申請之時期、優先權效期、爭議或訴訟(如:是否存在專利權無效之風險)。智慧財產權盡職調查的資料蒐集方式除了調閱智慧財產權申請記錄(file wrapper)、保密契約、授權文件,常見調查方式亦包含訪談重要員工和審閱發明人的僱傭契約。

  假若沒有善盡智慧財產權盡職調查,很可能會後續引發潛藏的風險,諸如:估值錯誤、交易可能會因為未提前排除繁冗細節而遲延進而影響投資人意願、可能會導致必須重新談判,最嚴重可能必須放棄整個交易。未善盡智慧財產權盡職調查著名的實例是蘋果(Apple)與唯冠的iPad商標爭議。2006年蘋果策畫平板電腦並希望以iPad為名,台灣的唯冠集團早在2000年起於多國註冊iPad電腦商標。2009年蘋果透過英國子公司以3.5萬英鎊收購唯冠的iPad全球商標,並於2010年推出iPad。因為蘋果的智慧財產權盡職調查疏漏,而未發現iPad於中國大陸之商標權屬於深圳唯冠公司而非台灣唯冠,所以不能進入中國大陸市場。最後,蘋果與深圳唯冠以6,000萬美元鉅額和解。從iPad案可窺知智慧財產權盡職調查之重要性。

本文為「經濟部產業技術司科技專案成果」

相關連結
你可能會想參加
※ 智慧財產權盡職調查(IP Due Diligence), 資訊工業策進會科技法律研究所, https://stli.iii.org.tw/article-detail.aspx?d=8325&no=67&tp=1 (最後瀏覽日:2025/12/04)
引註此篇文章
你可能還會想看
全美各州醫療委員會聯合會發布人工智慧(AI)治理指引,並要求醫師為AI之利用結果負最終責任

全美各州醫療委員會聯合會(The Federation of State Medical Boards, FSMB)於2024年4月發布「引導人工智慧以負責任與符合倫理方式融入臨床實務」(Navigating the Responsible and Ethical Incorporation of Artificial Intelligence into Clinical Practice)指引,明確概述醫師於利用AI協助提供照護時可採取之步驟,以履行其倫理與專業職責,期能藉此降低對患者造成傷害之風險;本指引之特色在於,其要求醫師為AI之利用結果負最終之責任。 FSMB 向各州醫療委員會與其他利害關係人所提供之原則與建議如下,以支持對包含AI之臨床照護進行負責任與符合倫理之監管: (1)透明度與揭露(Transparency and Disclosure): 應要求維持於醫療照護領域使用AI之透明度;各州醫療委員會應制定明確之指導方針,向患者揭露AI之使用情況,其有助於患者與醫師之理解,但不會造成不必要之行政負擔;FSMB 應制定文件,詳細說明最常用之AI工具之功能與局限性,以協助醫療委員會發揮監管者之角色,並應制定常見問題與最佳實務文件,作為提供照護時利用AI方面關於透明度之資源。 (2)教育與理解(Education and Understanding): FSMB及其於醫學教育界之合作夥伴,應為醫師、醫療委員會與患者,確認有關醫療照護中AI之結構化教育資源,該等資源應包括協助瞭解AI如何運作、其優點、潛在風險以及對患者照護之影響。 (3)負責任之使用與問責(Responsible Use and Accountability): 開發人員應協助醫師瞭解何時、以及如何於患者之照護中利用AI工具;選擇AI工具支援臨床決策之醫院系統、保險公司或其他機構應向醫師提供有關AI工具之教育、存取各工具之性能報告,並應設計一個定期檢視工具功效的流程;AI工具應以得使各州醫療委員會能稽核與理解之方式設計,以便適當評估依賴工具輸出結果之醫師是否偏離照護標準(standard of care);FSMB 應支持各州醫療委員會針對臨床醫師如何負責任、可問責地使用AI之解釋。 (4)公平性與近用(Equity and Access): 應努力確保所有患者皆能公平地近用AI帶來之好處;FSMB與各州醫療委員會致力於以下原則:醫療人員所提供之照護是公平的、且不受基於種族、民族或其他形式歧視之偏見影響;FSMB應與其他利害關係人一起理解並解決演算法偏差問題。 (5)隱私與資料安全(Privacy and Data Security): AI工具之開發者必須實施嚴格之保護措施,以保護AI開發與評估時所利用之患者資料,通常情況下應告知患者資料如何被利用,且FSMB應與行業利害相關人一起制定AI系統使用與散布患者資料之政策,包括針對AI開發或評估中使用之患者資料之最低資料保護措施。 (6)監督與監管(Oversight and Regulation): 各州醫療委員會必須保留對於提供醫療服務時,不當應用AI工具之醫生進行紀律處分之權力,其包括問責議題之考慮,特別是當AI系統變得更加自主時;各州醫療委員會應審查其管轄範圍內如何對「醫療行為」(practice of medicine)進行法律定義,以確保對提供醫療照護、人力或其他方面進行持續之監管監督。 (7)法律法規之持續審查與調整(Continual Review and Adaptation of Law and Regulations): 各州醫療委員會應在FSMB之支持下,隨著AI之不斷發展,持續檢視與更新與AI相關之指引與法規;政策制定者應考慮AI對基本法律原則的影響,例如醫療行為之定義以及AI對企業醫學實務之影響;FSMB 應建立一個專門團隊,持續檢視與調整AI指引與法規。 本指引指出,AI工具通常無能力取代醫師之專業判斷、道德責任或對州醫療委員會之責任,醫療行為中之關鍵職業責任始終為確保診斷、臨床決策與建議不存在偏差。與用於診斷或治療疾病之任何其他工具或鑑別方法相同,醫療專業人員有責任確保基於證據結論之準確性與真實性,因此於將AI系統用於患者照護前,醫師應以合理努力識別與解決偏差(如虛假或不準確之資訊等)。

美國FDA將基因檢測以醫療器材列管

  美國FDA在七月間針對多家提供大眾基因檢測服務(direct-to-consumer genetic tests, DTI genetic tests)的公司發出通知函,表示將對該產業進行規管。FDA在各通知函中明白表示,其認為收信公司所提供的基因檢測服務,符合其主管之醫療器材管理法規對於體外診斷器材(in vitro diagnostics)之定義。根據美國聯邦法律,人類用醫療器材採用分級管理的概念,在上市前必須依其風險等級進行上市前通報或申請核准,以確保其分析與臨床之有效性。FDA認為,由於這些公司的基因檢測並未依法提出上市前通報或申請核准,涉有違法之嫌。   FDA採取此項措施,明顯是為了保護消費者,避免其受到未經臨床檢驗的檢測結果之誤導。然事實上國際間對於是否透過法令、以及如何規範大眾基因檢測服務,並無一致性看法。迄今,大眾基因檢測服務在許多國家都是在法令混沌未明的狀態下銷售,也引發了許多問題。對於FDA此一政策態度,有認為以法令方式規範此種服務,將會扼殺這個還在萌芽發展終的產業;也有認為,這算是對消費者遲來的保護。   大眾基因檢測服務的管理,顯示既有法令面對新興科技發展之管理窘迫性,也代表各國政府在保護消費大眾與促進新興產業發展之間,著實不易從中找到利益權衡之點,其科技管理面臨前所未有的新挑戰。

何謂「IoT推進聯盟( IoT推進コンソーシアム)」?

  日本政府為了對應智慧聯網(Internet of Things, IoT)、巨量資料(Big Data)以及人工智慧(AI)時代之到來,經濟產業省及總務省於2015年10月23日正式成立了產官學研聯合之「IoT推進聯盟( IoT推進コンソーシアム)」。該聯盟旨在超越企業及其產業類別的既有框架,以民間作為主導,目的為推動IoT之相關技術研發,以及促進新創事業成立之推進組織,未來並將針對IoT相關政策以對政府提出建言。在該聯盟下有三個工作小組,包括技術開發、實證、標準化的「智慧IoT推進論壇(スマートIoT推進フォーラム)」;推動先進實證事業,規制改革之「IoT推進實驗室(IoT推進ラボ)」,以及針對資訊安全、隱私保護的專門工作小組。   我國自2011年行政院首度召開「智慧聯網產業推動策略會議」以來,積極推動發展台灣成為全球智慧聯網創新中心,以及成為亞洲智慧聯網解決方案領先國;而目前我國有「台灣物聯網聯盟(TIOTA)」、「中華物聯網聯盟」等民間推進組織,旨皆為結合產官學研各界資源,促進產業與政府、國際間之合作。

德國資料保護會議通過「哈姆巴爾宣言」,針對人工智慧之運用提出七大個資保護要求

  德國聯邦及各邦獨立資料保護監督機關(unabhängige Datenschutzaufsichtsbehörden)共同於2019年4月3日,召開第97屆資料保護會議通過哈姆巴爾宣言(Hambacher Erklärung,以下簡稱「Hambacher宣言」)。該宣言指出人工智慧雖然為人類帶來福祉,但同時對法律秩序內自由及民主體制造成巨大的威脅,特別是人工智慧系統可以透過自主學習不斷蒐集、處理與利用大量個人資料,並且透過自動化的演算系統,干預個人的權利與自由。   諸如人工智慧系統被運用於判讀應徵者履歷,其篩選結果給予女性較不利的評價時,則暴露出人工智慧處理大量資料時所產生的性別歧視,且該歧視結果無法藉由修正資料予以去除,否則將無法呈現原始資料之真實性。由於保護人民基本權利屬於國家之重要任務,國家有義務使人工智慧的發展與應用,符合民主法治國之制度框架。Hambacher宣言認為透過人工智慧系統運用個人資料時,應符合歐盟一般資料保護規則(The General Data Protection Regulation,以下簡稱GDPR)第5條個人資料蒐集、處理與利用之原則,並基於該原則針對人工智慧提出以下七點個資保護之要求: (1)人工智慧不應使個人成為客體:依據德國基本法第1條第1項人性尊嚴之保障,資料主體得不受自動化利用後所做成,具有法律效果或類似重大不利影響之決策拘束。 (2)人工智慧應符合目的限制原則:透過人工智慧系統蒐集、處理與利用個人資料時,即使後續擴張利用亦應與原始目的具有一致性。 (3)人工智慧運用處理須透明、易於理解及具有可解釋性:人工智慧在蒐集、處理與利用個人資料時,其過程應保持透明且決策結果易於理解及可解釋,以利於追溯及識別決策流程與結果。 (4)人工智慧應避免產生歧視結果:人工智慧應避免蒐集資料不足或錯誤資料等原因,而產生具有歧視性之決策結果,控管者或處理者使用人工智慧前,應評估對人的權利或自由之風險並控管之。 (5)應遵循資料最少蒐集原則:人工智慧系統通常會蒐集大量資料,蒐集或處理個人資料應於必要範圍內為之,且不得逾越特定目的之必要範圍,並應檢查個人資料是否完全匿名化。 (6)人工智慧須設置問責機關進行監督:依據GDPR第12條、第32條及第35條規定,人工智慧系統內的控管者或處理者應識別風險、溝通責任及採取必要防範措施,以確保蒐集、處理與利用個人資料之安全性。 (7)人工智慧應採取適當技術與組織上的措施管理之:為了符合GDPR第24條及第25條規定,聯邦資料保護監督機關應確認,控管者或處理者採用適當的現有技術及組織措施予以保障個人資料。   綜上所述,Hambacher宣言內容旨在要求,人工智慧在蒐集、處理及利用個人資料時,除遵守歐盟一般資料保護規則之規範外,亦應遵守上述提出之七點原則,以避免其運用結果干預資料主體之基本權利。

TOP