智慧財產權盡職調查(Intellectual Property Due Diligence, IP DD),又稱智慧財產權稽核(IP Audits)。所謂盡職調查(Due Diligence, DD)係指:即將進入投資或購買交易前,投資者或其委託人透過事實證據所進行與投資或購買相關的評估。評估內容包含公司結構、財務狀況、業務、稅務、人力資源等,亦涵蓋有形資產與無形資產。其主要目的在於釐清該投資或購買是否存在潛在的法律風險。隨智慧財產權的概念愈來愈成熟,智慧財產權盡職調查也益發重要。智慧財產權盡職調查的內容常會包含:財產權(如:註冊地域、質押或保全情形)、授權或轉授權限制、申請之時期、優先權效期、爭議或訴訟(如:是否存在專利權無效之風險)。智慧財產權盡職調查的資料蒐集方式除了調閱智慧財產權申請記錄(file wrapper)、保密契約、授權文件,常見調查方式亦包含訪談重要員工和審閱發明人的僱傭契約。
假若沒有善盡智慧財產權盡職調查,很可能會後續引發潛藏的風險,諸如:估值錯誤、交易可能會因為未提前排除繁冗細節而遲延進而影響投資人意願、可能會導致必須重新談判,最嚴重可能必須放棄整個交易。未善盡智慧財產權盡職調查著名的實例是蘋果(Apple)與唯冠的iPad商標爭議。2006年蘋果策畫平板電腦並希望以iPad為名,台灣的唯冠集團早在2000年起於多國註冊iPad電腦商標。2009年蘋果透過英國子公司以3.5萬英鎊收購唯冠的iPad全球商標,並於2010年推出iPad。因為蘋果的智慧財產權盡職調查疏漏,而未發現iPad於中國大陸之商標權屬於深圳唯冠公司而非台灣唯冠,所以不能進入中國大陸市場。最後,蘋果與深圳唯冠以6,000萬美元鉅額和解。從iPad案可窺知智慧財產權盡職調查之重要性。
本文為「經濟部產業技術司科技專案成果」
新加坡智財融資計畫介紹 科技法律研究所 法律研究員 羅育如 2014年12月23日 壹、前言 新加坡政府於2013年3月份提出IP (Intellectual Property) Hub Master Plan 10年期計畫[1],目標是成為亞洲智慧產權匯流中心。本文針對其中的智財融資計畫(IP Financing Scheme;IPFS)進行觀察,目的在於了解新加坡政府如何運用政府資源,協助建構智財交易市場。 貳、重點說明 新加坡政府2014年4月18日公布總值為1億新元(約24億新台幣)的智財權融資計畫,以協助新加坡本地的企業通過所持有的智財權獲得銀行的融資。 根據這項計畫,新加坡智財局將委託新加坡三家智財鑑價機構,為那些擁有智財權的企業進行鑑價,而相關企業則可以智財權為抵押,向參與本計畫的三家當地銀行—星展銀行(DBS Bank Ltd)、華僑銀行(Oversea-Chinese Banking Corporation (OCBC) Ltd)和大華銀行(United Overseas Bank (UOB) Ltd)申請企業貸款,用以擴展企業業務。 而新加坡智財局將依據不同企業貸款的申請情況,以計畫經費承擔部分違約風險,對於企業的智財資產融資負擔連帶責任(the Government partially underwrites the value of IP used as collateral)。須強調的是,該項計畫的申請資格需符合兩個標準:1.必須是新加坡企業;2.擔保品必須包含已獲證的專利。其餘具體推動作法,介紹如下: 一、申請流程 智財權融資計畫的申請流程分為三個步驟[2],首先必須向任選三家融資銀行的其中一家提出初步評估申請。接著則從三家合格之專門鑑價服務公司中,挑選適合的IP鑑價師,針對要作為擔保品的已獲證專利,進行價值評估。最後,該申請企業再將專業鑑價報告以及融資申請書,提交給融資銀行作審查。 二、合格之專業鑑價機構 如欲成為融資銀行可接受之合格智財權鑑價服務公司,必須通過新加坡智財局的評選機制,參加評選的公司必須符合以下四個條件: 1.在專利鑑價領域至少五年經驗。 2.過去曾替營業額500萬新元(約一億兩千萬台幣)的企業進行過智財鑑價。 3.曾經評鑑過至少100萬新元(約2400萬台幣)智財價值的案件。 4.每年的營業額最少為100萬新元(約2400萬台幣)。 目前通過評選之合格鑑價服務公司包括American Appraisal Singapore Pte Ltd(地點在新加坡)、Consor Intellectual Asset Management(地點在美國)以及Deloitte & Touche Financial Advisory Services Pte Ltd(地點在新加坡)。換言之,除上述三家公司外,融資銀行將不接受其他公司提供之智財權鑑價報告。 三、智財鑑價費用補助 新加坡智財局會補助欲申請智財權融資計畫之企業智財鑑價費用,但前提條件是,申請企業必須獲得通過融資審查,並提取100%獲准貸款之後,政府才會補助智財鑑價費用,而補助費用計算方式有三種選擇,政府從中選擇較低金額作為補助費用,包括: 1.50%智財鑑價費用。 2.該項智財價值2%。 3.新幣2.5萬(約60萬台幣)。 參、事件評析 一般而言,銀行不接受智財資產作為企業融資的擔保品,因為智財資產無明確的交易以及流通市場,當企業無法依約償還貸款時,銀行無法買賣智財擔保品,取回資金。 為了解決這個根本性的問題,新加坡政府透過智財融資計畫,直接提供資金挹注,協助銀行承擔智財融資風險,使企業可透過智財資產實質的取得資金,一方面讓企業更加願意投注智財相關費用,因為智財產出除了可用於內部製造與創新之外,還可以成為融資擔保品,協助企業取得資金。另一方面則可活絡智財交易市場,因為雖然政府承擔部份銀行風險,但智財交易市場還是會因為有需求而慢慢浮現。 [1] IP STEERING COMMITTEE, Intellectual Property (IP) Hub Master Plan─Developing Singapore as a Global IP Hub in Asia (2013) http://www.ipos.gov.sg/Portals/0/Press%20Release/IP%20HUB%20MASTER%20PLAN%20REPORT%202%20APR%202013.pdf(最後瀏覽日2014/10/15) [2] Intellectual Property Financing Scheme, ipos.gov, http://www.ipos.gov.sg/IPforYou/IPforBusinesses/IPFinancingScheme.aspx(last visited Oct. 15, 2014).
美國聯邦法官裁決AI「訓練」行為可主張合理使用美國聯邦法官裁決AI「訓練」行為可主張合理使用 資訊工業策進會科技法律研究所 2025年07月07日 確立我國資料創新利用的法制基礎,建構資料開放、共享和再利用的各項機制,滿足民間及政府取得高品質、可信任且易於利用資料的需求,以資料提升我國數位發展的價值,並強化民眾權利的保障,我國於2025年6月16日預告「促進資料創新利用發展條例」,擬推動資料基礎建設,促進更多資料的釋出。 AI發展領先國際的美國,近日首次有聯邦法院對AI訓練資料表達肯定合理使用看法,引發各界關注[1]。我國已開始著力於AI發展所需的資料流通與有效利用,該判決將有助於啟示我國個人資料、著作資料合法使用之法制因應研析。 壹、事件摘要 2025年6月23日美國加州北區聯邦地方法院(United States District Court for the Northern District of California),威廉·阿爾斯法官(Judge William Alsup)針對Andrea Bartz、Charles Graeber、Kirk Wallace Johnson這三位美國作家,對Anthropic公司訓練大型語言模型(Large Language Model, LLM)時使用受其等著作權保護書籍一案,作出指標性的簡易裁決(summary judgment)[2]。 此案被告掃描所購買的實體書籍,以及從盜版網站複製取得的受著作權保護的書籍,儲存在其數位化、可搜尋的檔案中,用來訓練其正在開發的各種大型語言模型。原告主張被當開發Claude AI模型,未經授權使用大量書籍作為訓練資料的行為,為「大規模未經授權利用」。法院則以四要素分析架構,支持合理使用抗辯(Fair Use Defense),強調AI訓練屬於技術發展過程中不可或缺的資料利用,AI公司於模型訓練階段使用著作權書籍,屬於「合理使用」(Fair Use),且具「高度轉化性」(Highly Transformative),包括將購買的實體圖書數位化,但不包括使用盜版,也不及於建立一個永久性的、通用目的的「圖書館(library)」(指訓練資料集)。 貳、重點說明 依美國著作權法第107條(17 U.S.C. § 107)規定,合理使用需綜合考量四要素,法官於本案中認為: 一、使用的目的與性質—形成能力具高度轉化性 AI模型訓練的本質在於學習語言結構、語意邏輯,而非單純複製或重現原著作。AI訓練過程將大量內容作為輸入,經由演算法解析、抽象化、向量化,最終形成轉個彎創造出不同的東西 (turn a hard corner and create something different) 的能力,屬於一種「學習」與「再創造」過程。AI訓練的目的並非為了重現原著作內容,而是為了讓模型具備生成新內容的能力。這種「轉化性」(transformative use)極高,與單純複製或替代原著作的行為有明顯區隔[3]。 另外訓練過程對資料做格式變更本身並未增加新的副本,簡化儲存並實現可搜尋性 (eased storage and enabled searchability),非為侵犯著作權人合法權益目的而進行,亦具有轉化性 (transformative)。原告就所購買的紙本圖書,有權按其認為合適的方式「處置 (dispose)」,將這些副本保存在其資料集中,用於所有一般用途[4]。 二、受保護作品的性質--高度創作性非關鍵因素 法院認同原告所主張的書籍是具有高度創意(creative)的作品理應享有較強的保護。但法院亦認為合理使用的四個要素,須為整體衡量,儘管作品本身具有較高的創意性,但由於使用行為的高度轉化性以及未向公眾直接重製原作表達,整體而言,法院認定用於訓練 LLM 的行為構成合理使用[5]。 三、使用的數量與實質性--巨大數量係轉化所必要 法院認為AI模型訓練需大量內容資料,甚至必須「全書」輸入,看似「大量使用」,但這正是AI技術本質所需。AI訓練是將內容進行抽象化、數據化處理,最終在生成新內容時,並不會原封不動重現原作。所以,雖然訓練過程涉及全部作品,但AI模型的輸出並不會重現原作的具體表達,這與單純複製、重製作品的行為有本質區別[6]。 四、對潛在市場或價值的影響 本案法院明確指出,人工智慧模型(特別是原告的Claude服務)的輸出內容,通常為全新生成內容,並非原作的精確重現或實質模仿冒,而且Claude服務在大型語言模型(LLM)與用戶之間加入額外功能,以確保沒有侵權輸出提供予用戶。因此,此類生成內容不構成對原作的替代,不會削弱原作的銷售市場,也不會造成市場混淆,而且著作權法保護的是原創而非保護作者免於競爭[7]。 不過即便法院支持被告的合理使用主張,肯定AI訓練與著作權法「鼓勵創作、促進知識流通」的立法目的相符。但仍然指出提供AI訓練的合理使用(Fair Use)不代表資料來源的適法性(Legality of Source)獲得合法認定。沒有任何判決支持或要求,盜版一本本來可以在書店購買的書籍對於撰寫書評、研究書中的事實或創建大型語言模型 (LLM) 是合理必要 (reasonably necessary) 的。此類對原本可(合法)取得的圖書進行盜版的行為,即使用於轉化性使用並立即丟棄,「本質上」、「無可救藥地」(inherently、irredeemably)構成侵害[8]。 參、事件評析 一、可能影響我國未來司法判決與行政函釋 我國於現行著作權法第65條規定下,須於個案交予我國法院認定合理使用主張是否能成立。本案判決為美國首個AI訓練行為可主張合理使用的法院見解,對於我國法院未來就對AI訓練資料取得的合法使用看法,顯見將會產生關鍵性影響。而且,先前美國著作權局之報告認為AI訓練過程中,使用受著作權保護作品可能具有轉化性,但利用結果(訓練出生成式AI)亦有可能影響市場競爭,對合理使用之認定較為嚴格,而此裁定並未採取相同的見解。 二、搜取網路供AI訓練資料的合理使用看法仍有疑慮 依據本會科法所創智中心對於美國著作權法制的觀察,目前美國各地法院中有多件相關案件正在進行審理,而且美國著作權局的合理使用立場較偏向有利於著作權利人[9]。相同的是,均不認同自盜版網站取得的資料可以主張合理使用。然而AI訓練所需資料,除來自於既有資料庫,亦多來自網路搜取,如其亦不在可主張範圍,那麼AI訓練的另一重要資料來源可能會受影響,後續仍須持續觀察其他案件判決結果。 三、有效率的資料授權利用機制仍是關鍵 前揭美國著作權局報告認為授權制度能同時促進產業發展並保護著作權,產業界正透過自願性授權解決作品訓練之方法,雖該制度於AI訓練上亦尚未為一完善制度。該裁決也指出,可合理使用資料於訓練AI,並不代表盜版取得訓練資料可以主張合理使用。這對於AI開發而言,仍是須要面對的議題。我國若要發展主權AI, 推動分散串接資料庫、建立權利人誘因機制,簡化資料查找與授權流程,讓AI訓練資料取得更具效率與合法性,才能根本打造台灣主權AI發展的永續基礎。 本文為資策會科法所創智中心完成之著作,非經同意或授權,不得為轉載、公開播送、公開傳輸、改作或重製等利用行為。 本文同步刊登於TIPS網站(https://www.tips.org.tw) [1]相關新聞、評論資訊,可參見:Bloomberg Law, "Anthropic’s AI Book-Training Deemed Fair Use by US Judge", https://news.bloomberglaw.com/ip-law/ai-training-is-fair-use-judge-rules-in-anthropic-copyright-suit-38;Anthropic wins a major fair use victory for AI — but it’s still in trouble for stealing books, https://www.theverge.com/news/692015/anthropic-wins-a-major-fair-use-victory-for-ai-but-its-still-in-trouble-for-stealing-books;Anthropic Scores a Landmark AI Copyright Win—but Will Face Trial Over Piracy Claims, https://www.wired.com/story/anthropic-ai-copyright-fair-use-piracy-ruling/;Anthropic Wins Fair Use Ruling In Authors' AI Copyright Suit, https://www.thehindu.com/sci-tech/technology/anthropic-wins-key-ruling-on-ai-in-authors-copyright-lawsuit/article69734375.ece., (最後閱覽日:2025/06/25) [2]Bartz et al. v. Anthropic PBC, No. 3:24-cv-05417-WHA, Doc. 231, (N.D. Cal. June 23, 2025),https://cdn.arstechnica.net/wp-content/uploads/2025/06/Bartz-v-Anthropic-Order-on-Fair-Use-6-23-25.pdf。(最後閱覽日:2025/06/25) [3]Id. at 12-14. [4]Id. at 14-18. [5]Id. at 30-31. [6]Id. at 25-26. [7]Id. at 28. [8]Id. at 18-19. [9]劉家儀,美國著作權局發布AI著作權報告第三部分:生成式AI訓練-AI訓練是否構成合理使用?https://stli.iii.org.tw/article-detail.aspx?no=0&tp=1&d=9352。
歐洲專利局發布人工智慧與機器學習專利審查指南正式生效歐洲專利局(European Patent Office, 下稱EPO)於2018年11月1日發佈新版專利審查指南已正式生效。此次新版的焦點為Part G, Chapter II, 3.3.1關於人工智慧(Artificial Intelligence, AI)與機器學習(Machine Learning, ML)的可專利性審查細則。 在新版審查指南Part G, Chapter II, 3.3中指出數學方法本身為法定不予專利事項,然而人工智慧和機器學習是利用運算模型和演算法來進行分類、聚類、迴歸、降維等發明,例如:神經網路、遺傳演算法、支援向量機(Support Vector Machines, SVM)、K-Means演算法、核迴歸和判別分析,不論它們是否能夠藉由數據加以訓練,此類運算模型和演算法本身,因具有抽象的數學性質而不具專利適格性。 其中,EPO亦針對人工智慧和機器學習相關應用舉例下列特殊情形,說明可否具備發明技術特徵: (一)可能具技術性 在心臟監測儀器運用神經網路辨別異常心跳,此種技術為具有技術貢獻。 基於低階特徵(例如:影像邊緣、像素數值)的數位影像、影片、音頻或語言訊號分類,屬於分類演算法的技術應用。 (二)可能不具技術性 根據文字內容進行分類,本身不具技術目的,而僅是語言學的目的(T 1358/09) 對抽象數據或電信網路數據紀錄進行分類,但未說明所產生分類的技術用途,亦被認定本身不具技術目的,即使該分類演算法的數據價值高(例如:穩健性)(T 1784/06)。 在新版審查指南中亦指出,當分類方法用於技術目的,其產生之訓練集(training set)和訓練分類器(training the classifier)的步驟,則能被視為發明的技術特徵。 近年來,人工智慧技術的應用分佈在我們的生活中,無論是自駕車、新藥開發、語音辨識、醫療診斷等,隨著人工智慧和機器學習技術快速發展,新版的審查指南將為此技術訂定可專利性標準,EPO未來要如何評判人工智慧和機器學習相關技術,將可透過申請案之審查結果持續進行關注。 「本文同步刊登於TIPS網站(https://www.tips.org.tw )」
美國FDA發布「醫療器材單一識別碼系統」規則草案美國推動醫療器材「單一識別」(Unique Device Identification, UDI)系統已行之有年,藉由建立UDI系統,強化醫療器材錯誤回報(Adverse Event Report)以及上市後產品監督(Post-Market Surveillance)等相關資訊的流通,以保障病人的安全。2007年由美國國會所通過的《食品藥物管理法修正案》(Food and Drug Administration Amendments Act of 2007, FDAAA)第226項,修正《食品、藥物及化妝品法》(Federal Food, Drug, and Cosmetic Act , FD&C Act)新增第519項f款,提供美國食品藥物管理局(U.S. Food and Drug Administration, FDA)訂定「醫療器材單一識別系統」法規之法源基礎。另一方面,在美國國會的要求之下,FDA於2012年7月3日正式發布「醫療器材單一識別碼系統」規則草案,進行公眾預告與評論(Notice and Comment)程序。 FDA長期收集醫療器材產業、醫療社群、病人與消費者,以及產業專家之建議,而將這些建議呈現在規則草案內容中,目的在於減少廠商成本,並順利建置UDI系統,是故草案內容實採取某些公司實際使用的標準與系統經驗。FDA所發布的規則草案重點如下: 1.「單一識別碼」將分為「器材識別碼」(Device Identifier),包含特定器材的單一識別;「生產識別碼」(Production Identifier),包含器材的生產資訊。 2.將採取區分醫療器材風險程度之高低作為標準,分階段置入高風險的醫療器材的「單一識別碼系統」;低風險的醫療器材將有條件在部分或全部的規則中例外免除。 3.免除零售的非處方(Over the Counter)醫療器材適用此規範,係因這些器材尚有統一商品條碼(Universal Product Code, UPC)作為識別。 FDA宣稱,隨著系統的建置與規範的制定,絕大多數的醫療器材將必須具有統一的日期標準,包含標籤上的到期日;亦必須使UDI能夠容易閱讀,且能為系統自動識別與應用資料擷取技術,進一步成為全球UDI資料庫建置的標準。我國目前雖尚無UDI系統的相關法規範,但產業與主管機關已就相關議題進行討論,而FDA所發佈的規則草案之發展歷程,即可作為相關單位在制定法規之參考,藉此瞭解先進國家在此議題之發展,提早與先進國家之標準做接軌。