人工智慧作為一前瞻性技術,運用於公部門,可以降低成本、提高管理品質、節省基層公務人員時間,整體改善政府公共服務。然而AI技術進化以及市場發展過於快速,現有採購類型沒有可以直接適用AI採購的判斷標準範本。因此,英國人工智慧辦公室(Office for Artificial Intelligence)與產官學研各界進行研商後,於2019年9月20日發表人工智慧採購指南草案(Draft Guidelines for AI procurement),作為公部門採購AI產品與服務之準則。該指南旨在加強公部門採購人員能力、協助採購人員評估供應商,讓廠商可以隨之調整其產品和服務內容。
該指南提供採購人員規劃政府AI採購的方向,包含招標、公告、評選、決標到履約。但指南強調無法解決採購AI產品與服務時遇到的所有挑戰。
指南內容簡述如下:
本文為「經濟部產業技術司科技專案成果」
英國2008年人工授精暨胚胎法(Human Fertilisation and Embryology Act 2008)關於胚胎保存之規範及其授權制定之附則(supplemental provision),於今年(2009)10月1日正式生效,大幅放寬胚胎保存的限制。依據舊法,胚胎保存之原則法定期間為5年,但基於醫學因素致胚胎為夫婦懷有具血緣關係(genetically-related)子女之最後機會,則胚胎保存期限可延長至10年,或最長可延至接受疾病治療婦女55歲。而新法則大幅放寬胚胎的保存期限至55年,並廢止上述接受疾病治療婦女僅能保存胚胎至55歲之規定。 這項管理胚胎保存的新法顯示了胚胎保存新舊法間的複雜性與爭議性,在法令生效前幾週因遭受法律質疑與遊說而做修正,由於先前由於新法放寬保存期限至55年的規定,僅適用於2004年10月1日後之保存胚胎,而在此之前的保存胚胎則僅限於不移植於代理孕母(surrogate)之胚胎始能延長保存期限,致遭到法律上不公平的質疑,並有向英國首相進行請願,而最終刪除上述限制。 但新法的問題並不僅於此,尚包括有婦女因在新法生效前屆滿55歲,使之前因接受子宮頸癌治療所保存的胚胎面臨被銷毀的命運,致有夫婦就此提起法律訴訟,質疑銷毀係爭胚胎有違反歐洲人權公約(European Convention on Human Rights)家庭生命權利之虞,並對面臨銷毀之胚胎提起假處分,使其胚胎暫時免除被銷毀的下場,然此項法律訴訟尚在進行,尚無從得知法院之決定。
日本經濟產業省利用巨量資料(BIG DATA)及人工智慧(AI)開發及測試新的經濟指標日本經濟產業省利用網絡積累巨量資料(BIG DATA)及人工智慧(AI)技術,應用民營企業相關資訊,開發和測試新經濟指標,分別於2017年7月19日及2018年1月8日公開該指標。為達到及早準確掌握經濟動向,對巨量資料等新資料之利用期待越來越高,政府部門也將利用巨量資料及人工智慧技術等方法,針對統計技術進行改革,。 新開發之指標有:1.SNS×AI商業信心指數(SNS×AI景況感指数):乃是透過人工智慧抽取關於商業信心的網路文章,並進行情緒(正/負)評估計算指數,期待有效地估計以每日為頻率之商業信心。2.SNS×AI礦工業生產預測指數(SNS×AI鉱工業生産予測指数):利用人工智慧選取有關工作和景氣之網路相關文件,結合「開放數據」之統計等技術,並利用人工智慧「機械學習」之手法,來預測「工業生產指數」。3.銷售點資訊管理系統(POS,point-of-sale)家電量販店銷售趨勢指標(POS家電量販店動向指標):透過收集具有銷售點資訊管理系統(POS)的家用電子大型專賣店的銷售資料,期待可以掌握每一日之「銷售趨勢」。 新的指數與既存統計指數,如景氣動向指數、中小企業信心指數、工業生產指數、商業動態統計等,其調查週期、公布頻率等,既存指數每月調查公布,新指數則進步至每日調查或每週公布等,在計算及呈現頻率上較既有更為精細。日本政府並設立「Big Data-STATS」網站,以實驗性質公佈上述經濟指標,並廣泛收納民眾意見以提高新指標的準確性。
經濟合作與發展組織發布《促進AI可歸責性:在生命週期中治理與管理風險以實現可信賴的AI》經濟合作與發展組織(Organisation for Economic Co-operation and Development, OECD)於2023年2月23日發布《促進AI可歸責性:在生命週期中治理與管理風險以實現可信賴的AI》(Advancing accountability in AI: Governing and managing risks throughout the lifecycle for trustworthy AI)。本報告整合ISO 31000:2018風險管理框架(risk-management framework)、美國國家標準暨技術研究院(National Institute of Standards and Technology, NIST)人工智慧風險管理框架(Artificial Intelligence Risk Management Framework, AI RMF)與OECD負責任商業行為之盡職調查指南(OECD Due Diligence Guidance for Responsible Business Conduct)等文件,將AI風險管理分為「界定、評估、處理、治理」四個階段: 1.界定:範圍、背景、參與者和風險準則(Define: Scope, context, actors and criteria)。AI風險會因不同使用情境及環境而有差異,第一步應先界定AI系統生命週期中每個階段涉及之範圍、參與者與利害關係人,並就各角色適用適當的風險評估準則。 2.評估:識別並量測AI風險(Assess: Identify and measure AI risks)。透過識別與分析個人、整體及社會層面的問題,評估潛在風險與發生程度,並根據各項基本價值原則及評估標準進行風險量測。 3.處理:預防、減輕或停止AI風險(Treat: Prevent, mitigate, or cease AI risks)。風險處理考慮每個潛在風險的影響,並大致分為與流程相關(Process-related)及技術(Technical)之兩大處理策略。前者要求AI參與者建立系統設計開發之相關管理程序,後者則與系統技術規格相關,處理此類風險可能需重新訓練或重新評估AI模型。 4.治理:監控、紀錄、溝通、諮詢與融入(Govern: Monitor, document, communicate, consult and embed)。透過在組織中導入培養風險管理的文化,並持續監控、審查管理流程、溝通與諮詢,以及保存相關紀錄,以進行治理。治理之重要性在於能為AI風險管理流程進行外在監督,並能夠更廣泛地在不同類型的組織中建立相應機制。
專利連結(Patent Linkage)-藥品研發與競爭之阻力或助力? - 談藥品查驗登記程序與專利權利狀態連結之發展