日本政府一直希望能透過改革司法制度,用以解決日本日益增加的跨國民事、智財爭議、消費爭議等案件,故從今(2019)年4月起,日本內閣官房聯合日本最高法院、法務省、外務省等相關單位,積極針對現行的司法制度進行檢討。日本政府期盼透過這次的司法改革,能降低訴訟成本、加速解決爭議案件。
日本內閣官房,於12月9日發表了第九次民事司法制度改革推進會議的決議,這次的會議針對日本現行的民事訴訟程序制度提出了制度改革大綱與具體的改革建議,如日本現行的民事裁判應進行全面IT化,並希望擴充非訟事件的類型。
在這次的會議中,有三個主要的重點:首先在民事裁判上,將增加訴訟代理人律師有提出電子化訴訟文件之義務,民事訴訟法修法通過後,要求訴訟代理人應線上提出訴訟相關文件,未來也會進一步要求本人自訴的案件,自訴者也負有與訴訟代理人同等之義務。
再者在智慧財產爭議案件上,日本政府正在評估是否導入「二階段訴訟制度」。未來在專利權是否侵權的判斷上,會將侵權與否的判斷與損害賠償的裁量拆分為兩階段,且未來在判斷與裁量上,希望法院能採用第三方的專家學者意見做為判斷的依據。
最後,為因應近年的國際化社會,日本新設了「日本國際紛爭解決中心」,希望能強化現行商業爭議案件的裁判程序。另外擴充了現行「國民生活中心」裡「越境消費者中心CCJ」的功能,除了針對跨境消費者外,更提供了在日外國人多國語言的諮詢管道。綜上所述,未來將會修正日本現行的民事訴訟法、專利法等相關法規,司法制度改革細節預計於2020年3月做出最終決議。
「本文同步刊登於TIPS網站(https://www.tips.org.tw)」。
歐洲專利局(European Patent Office, 下稱EPO)於2018年11月1日發佈新版專利審查指南已正式生效。此次新版的焦點為Part G, Chapter II, 3.3.1關於人工智慧(Artificial Intelligence, AI)與機器學習(Machine Learning, ML)的可專利性審查細則。 在新版審查指南Part G, Chapter II, 3.3中指出數學方法本身為法定不予專利事項,然而人工智慧和機器學習是利用運算模型和演算法來進行分類、聚類、迴歸、降維等發明,例如:神經網路、遺傳演算法、支援向量機(Support Vector Machines, SVM)、K-Means演算法、核迴歸和判別分析,不論它們是否能夠藉由數據加以訓練,此類運算模型和演算法本身,因具有抽象的數學性質而不具專利適格性。 其中,EPO亦針對人工智慧和機器學習相關應用舉例下列特殊情形,說明可否具備發明技術特徵: (一)可能具技術性 在心臟監測儀器運用神經網路辨別異常心跳,此種技術為具有技術貢獻。 基於低階特徵(例如:影像邊緣、像素數值)的數位影像、影片、音頻或語言訊號分類,屬於分類演算法的技術應用。 (二)可能不具技術性 根據文字內容進行分類,本身不具技術目的,而僅是語言學的目的(T 1358/09) 對抽象數據或電信網路數據紀錄進行分類,但未說明所產生分類的技術用途,亦被認定本身不具技術目的,即使該分類演算法的數據價值高(例如:穩健性)(T 1784/06)。 在新版審查指南中亦指出,當分類方法用於技術目的,其產生之訓練集(training set)和訓練分類器(training the classifier)的步驟,則能被視為發明的技術特徵。 近年來,人工智慧技術的應用分佈在我們的生活中,無論是自駕車、新藥開發、語音辨識、醫療診斷等,隨著人工智慧和機器學習技術快速發展,新版的審查指南將為此技術訂定可專利性標準,EPO未來要如何評判人工智慧和機器學習相關技術,將可透過申請案之審查結果持續進行關注。 「本文同步刊登於TIPS網站(https://www.tips.org.tw )」
日本提出「放送法施行規則」修正草案,強化智慧防救災訊息發佈設備整備措施日本總務省鑒於311地震時媒體播送的減災效果,在2014年2月14日對日本放送法施行規則的部分修正展開公眾諮詢。此次的修正係基於放送法母法第108條規定。依據該條的規範,基幹放送業者在進行國內的廣播時,若發生暴風、豪雨、洪水、地震、大型火災或有發生之虞時,為預防其發生或減輕其所造成之損害,應進行有效之廣播。 蓋日本在311災後,因其對對社會所產生巨大的衍生影響,後續規劃研擬了許多因應法制政策及措施。根據日本內閣府「2013年防災白皮書」,日本政府在311地震後所規劃政策方向及重要施政措施有:防災對策推進會議檢討會議的最終報告、災害對策法制的改正、與防災基本計畫的修正等各層面工作。 此外,依據日本防災對策推進會議檢討會議在2012年7月所完成之報告,其中對於災害立即回應體制的充實與強化,及建立綜合的防災資訊系統,建議應蒐集並提供必要之資訊,以盡早提供根本性的改善為目標。並且,為因應災害防救需要及強化即時應變能力,建立智慧防救災體系即屬刻不容緩,如何能運用各種多元性傳遞管道,落實將緊急性災害防救重要資訊傳送至每位國民,遂成關鍵議題。 而此次放送法施行規則的修正則擬增訂第86-2條,要求基幹放送業者應就基幹放送設備等向總務省所擬定的「基幹放送等整備計畫」;其中,關於母法108條廣播之確實實施而有特別必要者,並應取得總務省之確認。修正案擬增訂的101-2條除重複上述意旨,並要求總務省在確定確認上述計畫後,並應將公開其計畫的相關內容。 其中,對於地震防災對策特別措施法(地震防災対策特別措置法) 、水防法 與關於在土砂災害災害警戒區域內等的土砂災害防止推進的法律(土砂災害警戒区域等における土砂災害防止対策の推進に関する法律)等規範所訂定易受災區域內發信設備之設置,皆納入上述應被確認計畫的範圍。 日本屬地處地震頻繁國家,對於災害防救體系甚為重視,並投入大量資源加以發展。未來日本對於推動智慧防救災體系,是否會有更多進一步法制修改及調整,值得我們持續進行關注。
英國發布「人工智慧:機會與未來決策影響」政策報告,並聚焦人工智慧運用及管理英國科學辦公室於2016年11月9日,發布一份政策報告:「人工智慧:機會與未來決策影響(Artificial intelligence: opportunities and implications for the future of decision making)」,介紹人工智慧對於社會及政府的機會和影響,此份政策報告並提出以下各項重要建議: (一)關於人工智慧及應用界定與發展 人工智慧是指由人工製造系統所表現出來的智慧。不僅是將現有的流程自動化,還包含制定目標,並利用電腦程式實現這些目標,常見案例包括線上翻譯、語音辨識、搜尋引擎篩選排序、垃圾郵件過濾、透過用戶回饋改善線上服務、預測交通流量、環境或社會經濟趨勢發展觀察等。 (二)未來對社會及政府利益及衝擊 人工智慧針對提高生產力有巨大的潛力,最明顯的就是幫助企業或個人更有效地運用資源,並簡化大量資料的處理,例如Ocado 及 Amazon這樣的公司正充份利用人工智慧改善倉儲及銷售網路系統,使得客戶可便利快速購得網購商品。 目前,政府也日益增加相關技術的運用,以提高公共服務效率,使資源達到最佳化分配;減少決策者被誤導的可能;使政府決策透明化;確保各部門更了解人民的意見。然政府在利用人工智慧及巨量資料時,應遵守倫理使用指南,並遵守英國資料保護法及歐盟一般資料保護規則等相關法規。 在巨量資料、機器人、自動系統對於勞動市場的衝擊一直都是關注的議題,對於面臨未來工作結構的轉型及相關技術人員的進修及培養,應及早規劃,以適應未來的轉變。 (三)關於相關道德及法律風險管理課題 人工智慧可能潛在相關道德倫理問題。許多專家認為政府應積極管理並降低風險發生可能性,可從以下兩個面向思考: (1)研究機器學習與個人資料運用結合時,對個人自由、隱私和同意等概念的影響。 (2)調適由人工智慧作決策行為時的歸責概念和機制。 有關實際案例之研究,則包括,執法單位在應用預測技術時,應避免以種族、國籍、地址作為標準,並嚴守無罪推定原則,以防止民眾受到歧視或不公平的指控;透過人工智慧可從公開資料推測出某些私人訊息或其親朋好友的消息,此訊息即可能超出原先個人同意披露的內容;原先匿名化及去識別化的訊息,因人工智慧功能加強,導至可能被重新識別,故須定期檢視該保護措施是否足夠。另外,人工智慧的演算偏差可能導致偏見的風險,為了降低這種風險,技術人員應採取對應措施。 針對責任及疏失的判斷,目前尚無太多的實務案例,但為保持對使用人工智慧的信任,仍需有明確的歸責制,可能有必要讓首席執行長或高級主管對人工智慧做出的決策負最終責任。許多專家也建議,部分技術內容須保持透明度,以確定技術使用時是否有盡到相關注意義務。 人工智慧已成為未來發展趨勢之一,對於社會整體層面影響將越來越深,新的技術除了可提升生產力,帶來便利的生活,同樣也會帶來衝擊。為促進相關產業發展及推展新技術的使用,應打造技術發展友善環境,並對於公眾安全進行相關風險評估,如果風險屬於現有監管制度範圍,應評估是否可充分解決風險,或是須要做相對應的調適。另外,在人工智慧融入現實世界同時,相關業者應注意相關產品安全性、隱私權保護和從業人員的倫理教育,以提高大眾對新技術的接受及信賴,並確保對於未來挑戰及轉變已做好萬全準備。
紡織業大革命 減少石油消耗美國杜邦公司歷經十餘年研究,利用萃取玉米中的葡萄糖為原料,取代以石化製程而研發出紡織用的SORONA生物基聚合物,並取得二十七項專利。以此方法生產的SORONA,除了可降低對石油的依賴,對於全球溫室效應及環境保護將有重大的影響。 位在田納西州首座生化PDO(丙二醇,是生產高分子聚合物的主要原料,可用於製造塑膠、衣物紡織品或其他產品 )明年三月正式投入生產後,將前進亞洲設置第二座PDO廠,並尋求替代玉米的新再生能源。而正式量產後,將供應台灣遠東紡織及大陸廈門翔鷺紡織等十家大廠使用。