中國大陸科學技術部《關於促進新型研發機構發展的指導意見》

  中國大陸科學技術部於2019年9月12日公布《關於促進新型研發機構發展的指導意見》,目標是提升國家創新體系整體效能。在2016年5月中國大陸國務院發布的《第十三個五年規劃綱要》提及,為強化科技創新的引導作用,必須優化創新組織體系,藉由發展市場導向的「新型研發機構」,推動跨領域偕同創新。故「新型研發機構」必須聚焦在科技創新需求,主要從事科學技術創新與研發服務,具備投資主體多元化、管理制度現代化、營運機制市場化、用人機制靈活的獨立法人機構,得依法註冊為科技類民辦非企業單位(社會服務機構)、事業單位和企業。

  中國大陸科學技術部本次公布的指導意見,主要係針對「新型研發機構」在未來政策上之具體運作與發展方向提供指引,包括新型研發機構能夠申報的國家科研項目、鼓勵設立科技類民辦非企業單位的新型研發機構政策、政府獎勵科研措施等說明。

(一) 新型研發機構申報國家科研項目

  本指導意見第11條,符合條件的新型研發機構,可申報國家科技重大專項、國家重點研發計劃、國家自然科學基金等各類政府科技項目、科技創新基地和人才計劃。

(二) 鼓勵設立科技類民辦非企業單位的新型研發機構

  本指導意見第12條,科技類民辦非企業單位應依法進行登記管理,營運所得利潤主要用於機構管理運作、建設發展和研發創新等,出資方不得分紅。並得依據《中華人民共和國企業所得稅法》及非營利組織企業所得稅、職務科技成果轉化個人所得稅、科技創新進口稅收等規定,享受稅收優惠。

(三) 支持與獎勵科研措施

  本指導意見第14條,地方政府得根據區域創新發展需要,支持新型研發機構建設發展,包括給予基礎建設、購買科研設備、人才住房配套服務;採用創新券(innovation vouchers),推動企業向新型研發機構購買研發創新服務。第15條,更鼓勵透過國家科技成果轉化引導基金,支持新型研發機構推動科研成果轉化。

本文為「經濟部產業技術司科技專案成果」

相關連結
你可能會想參加
※ 中國大陸科學技術部《關於促進新型研發機構發展的指導意見》, 資訊工業策進會科技法律研究所, https://stli.iii.org.tw/article-detail.aspx?d=8359&no=65&tp=1 (最後瀏覽日:2025/12/08)
引註此篇文章
你可能還會想看
吃的安心 基改農產品安全性測試系統上路

  自從1994年第一種基因改造(Genetically Modified , GM)農產品~番茄在美國上市後,越來越多的GM農產品進入了我們的生活,使得大家越來越注重食用的安全性。行政院農業委員會農業藥物毒物試驗所開發的基因改造農產品安全測試系統於11月正式上路,日後台灣自行研發的GM農產品上市前,可以送到藥毒所檢驗,以確定對人體無害。   國際間對於GM農產品安全性爭議主要有兩個層面:生物安全性(作為食品之安全性)與生態環境安全(對環境的衝擊評估)。整體而言,GM農產品的食用安全評估以過敏性測試最為重要,也就是針對轉殖的DNA基因,測試其外源表現物質(蛋白質)對人體的影響,換句話說:蛋白質是較容易讓人體產生過敏的來源。   藥毒所開發的過敏反應和安全性測試系統,其針對GM農產品的評估方法有三:序列比對(和已知過敏原比對)、消化穩定性(採用人工胃液和腸液分解測試)、動物實驗模式(讓大白鼠直接食用)。相信這套安全測試系統的上路,可讓民眾食用台灣自行研發的GM農產品較為安心。

蕃茄醬瓶身相似設計引發商標侵權之爭

  今年(2014)3月6日美國號稱蕃茄醬巨人的H.J. Heinz Co. (以下簡稱Heinz)於美國德州聯邦法院向一家德州公司Figueroa Brothers Inc. (以下簡稱Figueroa)提起商標侵權訴訟,主張Figueroa製造販售的蕃茄醬採用與其設計幾近相同的瓶身(ketchup bottle),侵害其極具識別性、代表性的商業表徵(trade dress)。   Heinz目前針對該玻璃瓶設計已註冊取得3個聯邦商標,其除了主張聯邦商標法保護外,亦基於普通法(common law)提起商標侵權主張。然而,Heinz表示,在提起訴訟前,已數次嘗試與Figueroa私下解決此爭議,但未果,所以最後才會訴諸法律途徑,提起訴訟。   Heinz於訴狀中表示從1890年代開始,便開始行銷販售有名的蕃茄醬產品,該產品的包裝即為系爭具有高度識別性的玻璃瓶設計。Heinz認為被告Figueroa未經同意擅自使用此瓶身設計的行為會造成消費者混淆,搭便車利用Heinz花費大量心力、時間和費用所累積的良好商譽來牟利。此外,Heinz並注意到Figueroa其他醬料產品例如莎莎醬、辣醬皆使用不相似的包裝,惟獨蕃茄醬產品包裝跟其有名的玻璃瓶設計幾乎完全相同。   自Heinz提起訴訟過了近一個禮拜,案情有了變化,Figueroa於4月初與Heinz和解,雖然Figueroa並未承認其侵害Heinz商標權,但同意從今年12月開始停止使用該玻璃瓶設計,並從此不再侵害Heinz的商業表徵(玻璃瓶設計)。然而,和解金額相關條款並未揭露。   此案之後,對於其他欲仿冒或剽竊Heinz的玻璃瓶設計者,是否會有遏阻影響,值得後續觀察。

歐盟執委會通過關於《人工智慧責任指令》之立法提案

  歐盟執委會(European Commission)於2022年9月28日通過《人工智慧責任指令》(AI Liability Directive)之立法提案,以補充2021年4月通過之《人工智慧法》草案(Artificial Intelligence Act)。鑑於人工智慧產品之不透明性、複雜性且具自主行為等多項特徵,受損害者往往難以舉證並獲得因人工智慧所造成之損害賠償,《人工智慧責任指令》立法提案即為促使因人工智慧而受有損害者,得以更容易獲得賠償,並減輕受損害者請求損害賠償之舉證責任。   《人工智慧責任指令》透過引入兩個主要方式:(一)可推翻之推定(rebuttable presumptions):人工智慧責任指令透過「因果關係推定(presumption of causality)」來減輕受損害者之舉證責任(burden of proof)。受損害者(不論是個人、企業或組織)若能證明人工智慧系統因過失或不遵守法規要求之義務,致其受有損害(包括基本權利在內之生命、健康、財產或隱私等),並且該損害與人工智慧系統之表現具有因果關係,法院即可推定該過失或不遵守義務之行為造成受損害者之損害。相對的,人工智慧之供應商或開發商等也可提供相關證據證明其過失不可能造成損害,或該損害係由其他原因所致,以推翻該損害之推定。(二)證據揭露機制(disclosure of evidence mechanism):若受害者之損害涉及高風險人工智慧時,得要求自該供應商或開發商等處獲取證據之權利。受害者透過證據揭露機制能夠較容易地尋求法律賠償,並得以找出究責的對象。   歐盟執委會認為以安全為導向的《人工智慧法》,為人工智慧訂定橫向規則,旨在降低風險和防止損害,但仍需要《人工智慧責任指令》之責任規定,以確保損害風險出現時,相關賠償得以被實現。但歐盟執委會仍選擇了較小的干預手段,《人工智慧責任指令》針對過失之責任制度進行改革,並未採取舉證責任倒置(a reversal of the burden of proof)之作法,而是透過「可推翻之推定」,一方面減輕受損害者之舉證責任,使受損害者得對影響人工智慧系統並產生過失或侵害行為之人提出損害賠償;另一方面賦予人工智慧之供應商或開發商等有機會推翻前揭造成損害之推定,以避免人工智慧系統之供應商或開發商面臨更高的責任風險,可能阻礙人工智慧產品和服務創新。

英國資訊委員辦公室提出人工智慧(AI)稽核框架

  人工智慧(Artificial Intelligence, AI)的應用,已逐漸滲透到日常生活各領域中。為提升AI運用之效益,減少AI對個人與社會帶來之負面衝擊,英國資訊委員辦公室(Information Commissioner’s Office, ICO)於2019年3月提出「AI稽核框架」(Auditing Framework for Artificial Intelligence),作為確保AI應用合乎規範要求的方法論,並藉機引導公務機關和企業組織,評估與管理AI應用對資料保護之風險,進而建構一個可信賴的AI應用環境。   AI稽核框架主要由二大面向所構成—「治理與可歸責性」(governance and accountability)以及「AI特定風險領域」(AI-specific risk areas)。「治理與可歸責性」面向,係就公務機關和企業組織,應採取措施以遵循資料保護規範要求的角度切入,提出八項稽核重點,包括:風險偏好(risk appetite)、設計階段納入資料保護及透過預設保護資料(data protection by design and by default)、領導管理與監督(leadership management and oversight)、政策與程序(policies and procedures)、管理與通報架構(management and reporting structures)、文書作業與稽核紀錄(documentation and audit trails)、遵循與確保能力(compliance and assurance capabilities)、教育訓練與意識(training and awareness)。   「AI特定風險領域」面向,則是ICO特別針對AI,盤點下列八項潛在的資料保護風險,作為風險管理之關注重點: 一、 資料側寫之公平性與透明性(fairness and transparency in profiling); 二、 準確性(accuracy):包含AI開發過程中資料使用之準確性,以及應用AI所衍生資料之準確性; 三、 完全自動化決策模型(fully automated decision making models):涉及人類介入AI決策之程度,歐盟一般資料保護規則(General Data Protection Regulation, GDPR)原則上禁止無人為介入的單純自動化決策; 四、 安全性與網路(security and cyber):包括AI測試、委外處理資料、資料重新識別等風險; 五、 權衡(trade-offs):不同規範原則之間的取捨,如隱私保護與資料準確性; 六、 資料最少化與目的限制(data minimization and purpose limitation); 七、 資料當事人之權利行使(exercise of rights); 八、 對廣泛公共利益和權利之衝擊(impact on broader public interests and rights)。   ICO將持續就前述AI特定風險領域,進行更深入的分析,並開放公眾討論,未來亦將提供相關技術和組織上之控制措施,供公務機關及企業組織進行稽核實務時之參考。

TOP