《確保關鍵礦產安全可靠供應的聯邦戰略》(A Federal Strategy to Ensure Secure and Reliable Supplies of Critical Minerals),為美國商務部於2019年6月4日發布的一項國家層級礦產行動計劃,制定依據為美國總統於2017年12月20日發布的13817號行政命令,戰略目標是強化美國製造業與國防工業及礦產供應鏈彈性,推進研究開發工作,減少美國對中國大陸等外國實體的關鍵礦產資源依賴。
美國商務部表示,確保關鍵礦產供應穩定及供應鏈彈性,對於美國經濟繁榮與國防安全至關重要,過去美國過分依賴外國關鍵礦產資源及供應鏈,導致經濟和軍事出現戰略性弱點。據統計共有35種與美國經濟與國家安全相關的礦產品,包括鈾、鈦和稀土元素,為智慧手機、飛機、電腦和GPS導航系統及風力發動機、節能照明與混合動力汽車電池等綠色科技產品的必要組成。35種關鍵礦產中有31種選擇進口,其中更有14種關鍵礦產是完全依賴國外進口。
《確保關鍵礦產安全可靠供應的聯邦戰略》提出6項行動綱領包括:(1)推動關鍵礦產供應鏈的轉型研究、開發與部署;(2)加強美國關鍵礦產供應鏈和國防工業基地;(3)強化與關鍵礦產相關的國際貿易合作;(4)提升對國內關鍵礦產資源知識;(5)提升在美國聯邦土地上獲得關鍵礦產資源的機會,並簡化授權開採的審查程序;(6)增加美國關鍵礦產資源勞動力等。
本文為「經濟部產業技術司科技專案成果」
在專利領域,歐盟層級目前尚未有任何整合全體會員國內國專利法之有效法規, 1973 年訂定之歐洲專利公約( European Patent Convention, EPC )並非歐盟層級的法律,且 EPC 僅就歐洲專利的申請、審核及取得予以規定,至於專利權之保護,專利權人仍必須在受侵害國家自行尋求救濟,故自 1972 年起,歐盟即一直試圖整合共同體之專利規定,持續催生「共同專利規則」(草案)( Proposal for a Council Regulation on the Community Patent ),目的是希望在歐洲層級,除了可以有統一受理及發給共同體專利之機制外,關於涉及共同體專利實體法上之解釋,亦能予以統一審理、解釋。 目前歐盟各國紛歧的專利制度,使產業維護與保護其專利權益之成本極高,且受到嚴重影響的往往是那些中小型的新創與研發行公司,若再加上其他必要費用及語言隔閡(當前翻譯費用占歐洲專利的所有申請成本的比率可能高達 20 %)等因素一起比較,即可發現歐洲中小型企業處於競爭劣勢;相較於此,美國對雇用員工少於 300 人的企業的專利申請費用,提供高達 80 %的補助。 由於生技產業多為中小型規模的企業,為確保這些企業的競爭力,歐洲生技產業協會( EuropaBio )建議歐盟參考去( 2005 )年 12 月 15 日 通過的「歐盟醫藥品管理局協助中小型公司發展之規則」( Commission Regulation (EC) No 2049/2005 )減免中小型生技製藥公司新藥上市申請規費的方式,對中小型企業之專利申請費用,亦給予折扣。 這項建議獲得歐盟執委會的支持,執委會並打算在 10 月重新提出的共同體專利規則( Regulation on Community Patent - London Protocol )中納入考量根據 London Protocol ,未來歐洲專利得僅以三種語言(英文、德文及法文)提出,該 Protocol 必須至少有八個國家簽署,包括法國、德國及英國,始能生效 截至目前為止,已經有十個國家(包括德國及英國)的國會同意接受該協議,其中七國並已經相關文件交存,因此一般認為 London Protocol 通過的機率極大。
歐盟執委會、成員國和風電企業共同簽署風能憲章,建構法規環境以利風電產業發展歐盟執委會、26個成員國的能源部長和300多個風能相關企業於2023年12月19日在歐洲風能行動計畫(European Wind Power Action Plan)的基礎上共同簽署風能憲章(European Wind Charter),將有助歐盟執委會、成員國和風電企業互相協調並加速相關行動的執行,優化歐洲風電產業的發展環境。而該憲章主要的6項承諾措施分別為: (1)加速相關許可流程、優先執行修正後的《再生能源指令(Renewable Energy Directive)》,及提供風能的長期發展規劃,以確保(至少在2024-2026年間)充足、穩定且可預期的風能發展管道。 (2)改善及簡化風電競標機制的設計並建立一致性,以促進高品質風機的生產,且能同時具備環保、創新、資通安全和良好勞動條件;在不影響《淨零產業法案(Net-Zero Industry Act)》的立法程序下,於競標設計中納入客觀、透明、非歧視、非依據價格的資格預審或核准標準,特別是關於永續性和韌性、資通安全、商業行為和執行能力,以及民眾參與等要素。 (3)確保簽署單位所提供的商業程序、監管、產品和服務都能滿足如《淨零產業法案》和歐洲風能行動計畫中關於高品質的標準,包含環保、創新、資通安全和良好勞動條件;同時,也承諾將移除歐盟法規上的限制,並透過歐盟層級的工具減少財務風險。 (4)提供明確的競標時程,並採取適當的措施最大化各專案的執行率,包含訂定未執行時的懲罰,以及建立製造商和營運商的長期夥伴關係,提升供給和需求的可預測性,同時減緩價格波動的影響。 (5)透過積極的監管建立公平且具競爭力的國際環境,並考慮採取措施以處理可能的不公平國際貿易行為;在《外國直接投資規則(Foreign Direct Investment Regulation)》和其他適當工具的框架下合作投資風電領域。 (6)擴大風能設備的產製量能以滿足預期增加的風電專案需求,以及強化既有的勞動和工業能力、擴大投資規模,並支持工人技能升級和再培訓,確保足夠的勞動力。
老鼠耳朵LOGO引發商標之爭--迪士尼v.s.加拿大知名DJ加拿大知名DJ Deadmau5去年(2013年)6月向美國專利商標局申請一個貌似迪士尼米奇老鼠樣子的logo為商標(一個大圓加上兩個小圓盤當作耳朵),此舉引發迪士尼的不滿,於本週二向美國專利商標局提出異議。 迪士尼認為Deadmau5所申請的logo跟其知名的米奇老鼠耳朵(Mickey ears)太過近似,若美國專利商標局核准註冊Deadmau5的logo將可能對其在美國及世界各地的事業有所損害,所以迪士尼正試圖阻止Deadmau5於美國取得註冊商標。 根據Deadmau5的律師陳述,Deadmau5一直以來都帶著老鼠頭形狀的頭套出現在各場合,時間已長達10年已上,且已於超過30個國家取得老鼠頭形狀的註冊商標,包含日本、得國、義大利及英國等。 而此位33歲的知名DJ Deadmau5則於社群網路上發文表示他已經決定好要奮力對戰迪士尼,迪士尼此種積極保護其米奇老鼠商標的行為已行之有年、眾所皆知。例如1989年時迪士尼成功透過法律行動的威脅,讓位於佛羅里達州的三家幼兒照顧中心清除了原本漆於牆上的米奇老鼠和其他迪士尼卡通人物角色。 此次商標註冊爭議,迪士尼究竟能否成功阻止Deadmau5註冊取得類似米老鼠耳朵樣式的logo,值得後續關注。
美國著作權局發布AI著作權報告第三部分:生成式AI訓練-AI訓練是否構成合理使用?美國著作權局發布AI著作權報告第三部分:生成式AI訓練-AI訓練是否構成合理使用? 資訊工業策進會科技法律研究所 2025年06月04日 美國著作權局於2025年5月發布著作權與AI第三部分報告之預出版本 (Copyright and Artificial Intelligence Part 3: Generative AI Training pre-publication version)[1],該報告重點為生成式AI訓練資料與著作權之關係,彙整各方意見並分析現行法制之挑戰及修改方向,目前發布之版本為預出版本,該報告說明將於近期發布最終確認版,預期其結論與實質內容並不會有修改。 壹、事件摘要 美國著作權局自2023年起即開始對AI所引發之著作權法律及政策問題進行研究,同年8月著作權局發布著作權及AI諮詢通知(Comments on Artificial Intelligence Notice of Inquiry, NOI),徵集各界對AI著作權議題之意見,著作權局亦針對相關議題舉辦多場公聽會及研討會協助意見之蒐集[2]。NOI發布後蒐集到之意見經著作權局整理分析,於2024年7月起發布AI著作權報告,第一部分為數位仿造,第二部分於2025年1月發布為就AI作品之著作可保護性之分析,而同年5月所發布之第三部分則聚焦於生成式AI之訓練。 生成式AI於訓練過程可能大量使用受著作權保護之作品,此份報告針對訓練過程可能涉及之著作權問題進行分析,主要說明AI模型訓練過程中使用受著作權保護作品是否可構成合理使用。 貳、重點說明 一、生成式AI模型訓練及模型權重對重製權之侵害 使用受著作權保護作品進行AI模型訓練涉及著作權中之重製,除非開發者能提出授權或其他合理抗辯如合理使用等,否則可能對一項或多項著作權利構成初步侵權(Prima Facie Infringement)。AI開發者於模型訓練階段會進行多次作品複製,包含下載作品、於儲存媒介間轉換、將作品進行格式化或製作副本等[3],模型訓練過程中暫時複製之作品亦有可能因其存在於時間足夠而構成重製權之侵害[4]。 在特定情形下,模型權重(model weights)[5]之複製亦可能構成重製權之侵害。訓練過程可能使模型權重包含著作權作品,而若第三方複製了包含著作權作品之模型權重,即便其未參與模型之訓練,亦可能構成初步侵權[6]。若模型能在未經外部輸入之情形下產出與訓練範例相似之內容時,表示此範例必以某種形式存在於模型權重中,故此模型權重之複製極有可能侵犯著作重製權[7]。換言之,不僅開發者有可能因模型權重之複製侵害著作權人之權利,部署、使用等第三方若複製模型權重亦有可能構成對重製權之侵害。 著作權局指出,模型權重究竟是否會構成重製權或甚至衍生作品之侵權,須判斷該模型權重是否保留與作品受權利保護部分實質相似之內容,僅有在實質相似之情形下,模型權重之複製才可能構成侵權[8]。 二、合理使用 對著作權作品之合理使用可做為作品重製權的抗辯,著作權局於報告中就不同因素分析AI使用著作權作品進行訓練是否得主張合理使用。AI於訓練過程中會有多次複製行為,惟在判斷AI模型訓練是否為對作品之合理使用,仍須視整體使用情境進行判斷[9]。 (1) 作品轉化性須視模型目的及佈署判斷 報告中分析作品之轉化性(transformativeness)[10],AI訓練使用作品是否具有轉化性並非絕對,而是依據模型最終之功能及佈署有程度上之區別,須依個案判斷。若模型之訓練目的為用於研究或封閉系統,則該模型具高轉化性;若其目的是生成與訓練用作品實質相似之結果時,不具轉化性。多數模型之轉化程度會落在前述兩極端之中間,如模型使用特定類型之作品進行訓練,用以生成使用目的與原作相同之內容時,即便其生成內容未有實質相似,頂多僅為有限度之轉化(modestly transformative)[11]。AI開發商得於其系統設置防護措施,限制模型複製受著作權保護作品之節錄內容,使生成內容之目的與原作品不同,此措施能使模型訓練更具轉化性[12]。 有論者認為,使用受著作權保護作品進行AI模型訓練並非出於表達目的,且近似人類學習,因此實質上應是具有轉化性的,著作權局否定了前述兩種說法。報告中說明,語言模型於訓練時所吸收的內容包含文句、段落及文件之排列選擇,並非單純僅吸收其單字含意,且所生成之模型是被用作創造表達性內容,故不得謂AI模型為非表達性目的[13]。其次,針對人類學習觀點,報告首先闡明,學生基於學習目的亦不得以合理使用為由複製整本著作,因此人類學習並不得直接作為合理使用之抗辯。生成式AI之訓練能迅速分析並生成完美之作品,此非如同人類經學習後會產出具個別人格特質之結果,故著作權局不同意AI模型之訓練為與人類學習相同具有轉化性之論點[14]。 (2) 受著作權保護作品之表達性 AI訓練所使用之受著作權保護作品若具較高創作或表達性,如小說、電影等,其著作權比其他作品如電腦編碼等功能性作品更接近著作權之保護核心。而AI模型訓練來源多元,因此判斷上仍須視個案模型及作品而定。 (3) 使用作品之合理比例 AI模型訓練需大量複製受著作權保護作品,於判斷其複製比例是否合理時,係判斷模型訓練所複製之部分對於受著作權保護作品之數量及重要性使否合理[15]。作品使用之合理性,須考量重要性以及數量,若模型僅使用小部分作品做訓練,但該部分為著作權作品之核心部分,此使用並不一定合理。 在使用完整作品層面,生成式AI較一般搜尋引擎更不具合理性,生成式AI所提供之資訊並非僅限於其訓練資料庫中所複製作品資料。然而,許多生成式AI之訓練方式必須使用完整作品進行訓練,因此,著作權局指出,雖開發者使用完整作品進行訓練與合理使用相悖,但若其訓練具有轉化性目的(transformative purpose),並且有必要透過大量作品之訓練以提升模型效能時,則使用整部作品進行訓練可能被認為合理[16]。換言之,使用完整作品進行訓練合理與否須連同其使用必要性及訓練目的一併考量。 (4) 影響原作品之潛在市場或價值 報告中點出三項生成式AI訓練可能造成的市場危害。 A 銷售損失(lose sale):權利人因潛在消費者選擇AI複製創作取代原作,而失去收入。 B 市場稀釋 (market dilution):AI生成內容之速度以及規模對訓練資料中同類作品之市場造成稀釋風險,原作者將更難銷售其作品亦將使消費者更難找到真人創作之作品[17]。AI所生成風格相似之作品亦會導致市場稀釋,風格非為著作權所保障之方為,惟若AI生成與作品風格相似之內容,即便未有實質相似,但消費者可能因此難以分辨AI創作與真人作者,將使AI作品與原作者之作品於市場上直接競爭而影響原市場[18]。 C 喪失授權收入機會 (lost licensing opportunities):權利人本可就其作品於市場上有授權收入之機會,但因AI未經授權使用作品進行訓練而喪失該部分收入[19]。 三、 授權使用 對於AI自願授權之情形於近年越來越普遍,報告亦肯認自願授權之可行性,雖自願授權可行,且已有開發商開始實施,惟對於完全滿足AI產業之需求仍存有疑義[20]。該報告認為,即便現階段自願性授權仍為發展中之制度,但該制度確實能避免使用著作權作品之不確定性。著作權局認為應讓自願性授權制度於授權市場於無政府干預情形下繼續發展,若未來於特定類型作品中出現失靈情形時,再考慮進行擴大集體授權等干預措施[21]。 參、事件評析 AI訓練使用著作權保護作品是否可以合理使用作為抗辯為近年AI發展下著作權高度討論問題之一。目前美國各地法院中有40多件相關案件正在進行審理,然就此報告之結論觀之,其並未對AI訓練是否可作為合理使用給予統一解答,合理使用與否仍須視個案而定。如同報告結論所提及,AI訓練過程中,使用受著作權保護作品可能具有轉化性,但是否足以構成合理使用,仍須視其所使用之作品、來源以及目的等個案因素而定[22]。AI訓練於著作權仍存在一定程度之不確定性。 值得注意的是,雖報告並未明示AI訓練使否為合理使用著作權作品,惟其立場似乎更偏向有利於著作權利人。例如報告中於轉化性認定具有灰色地帶,開發商是否能主張合理使用仍需於後續由法院個案認定。此外,報告中提及市場稀釋理論,目前尚未有法院採用,對合理使用之認定較為嚴格,即使未有實質相似之生成內容亦有可能因影響市場競爭被視為非合理使用,可見該理論對著作權利人之權利保障。 同時著作權局亦正向看待產業界透過自願性授權進行作品訓練之方法,雖該制度於AI訓練上尚未為一完善制度,但確實地授權制度能同時促進產業發展並保護著作權[23]。目前實務上亦是以此種作法解決合理使用之困境,但授權制度仍有待市場持續發展完善制度以確保能符合AI訓練之需求。 美國著作權局之報告雖對AI使用著作權保護作品進行訓練進行分析及說明,惟其結論仍是認為判斷上需依照個案分析。目前國際上尚未有對AI合理使用之實際定論,自願性授權仍為產業界所使用之方法。我國著作權法亦未對AI訓練之合理使用有說明,國際上將會如何發展仍有待觀察。 資策會科法所創智中心致力於著作權相關科技法律研究,本中心將持續關注相關議題並更新動態。 本文為資策會科法所創智中心完成之著作,非經同意或授權,不得為轉載、公開播送、公開傳輸、改作或重製等利用行為。 [1]U.S. Copyright Office Copyright and Artificial Intelligence, Part 3: Generative AI Training pre-publication version, https://www.copyright.gov/ai/Copyright-and-Artificial-Intelligence-Part-3-Generative-AI-Training-Report-Pre-Publication-Version.pdf [2]U.S. Copyright Office, Copyright Office Issues Notice of Inquiry on Copyright and Artificial Intelligence, https://www.copyright.gov/newsnet/2023/1017.html (last viewed: 2025/05/19) [3]supra note 1, at 26. [4]Id. at 27. [5]AI模型之建立仰賴神經網,主要功能為將輸入資料轉換為輸出資料。神經網路之運作方式係透過大量於訓練過程中產生之參數進行運案,而該些參數即為「權重」(weights)。 [6]Id. at 28. [7]Id. [8]Id. at 30. [9]Id. at 36-37. [10]轉化性係指新作品加入新元素,具有與原作不同目的或性質,且以新表達、意義或訊息改造原作。並且新作品於市場上較不會取代原作。 [11]Id. at 46. [12]Id. [13]Id. at 47. [14]Id. at 48. [15]Id. at 54. [16]Id. at 60. [17]Id. at 65. [18]Id. at 65-66. [19]Id. at 66-67. [20]Id. at 85. [21]Id. at 106. [22]Id. at 107. [23]Id. 本文同步刊登於TIPS網站(https://www.tips.org.tw)