IMD世界人才評比

  瑞士洛桑管理學院(International Institute for Management Development, IMD)於2019年11月18日發布2019 年世界人才評比報告(The IMD World Talent Ranking 2019 results)。IMD作為全球最著名商學院之一,其所屬之世界競爭力研究中心(IMD World Competitiveness Center, WCC)透過收集數據以及分析相關政策結果,推進對世界競爭力的認知,包含每年出版年度世界競爭力排名(World Competitiveness Rankings)、世界數位競爭力報告(World Digital Competitiveness Ranking),和世界人才評比報告。

  2019 年世界人才評比報告以「人才投資與發展」、「人才吸引力」和「人才整備度」(Readiness)為三大評比指標,評比63個經濟體。「人才投資與發展」衡量國家提供給人力之資源,「人才吸引力」評估吸引本地和外國人才的程度,「人才整備度」則評估人才技術及競爭品質。三大指標下再區分有32個細項,包含公共教育支出、師生比、在職訓練、女性勞動力、學徒制度、員工獎酬及紅利、個人所得稅率、職場環境健康等。

  2019年之人才評比結果,前5名均為歐洲國家,依序為瑞士、丹麥、瑞典、奧地利及盧森堡。我國在全球排名20,亞洲排名第3,僅次新加坡(10)與香港(15),勝過排名分別為35和33的日韓兩國,為歷年來排名最佳。細項中,我國較為優勢的部分包括國際學生能力評鑑(PISA)排名第2、理工科畢業生比例全球第3、衛生健康環境全球第6等。

本文為「經濟部產業技術司科技專案成果」

相關連結
你可能會想參加
※ IMD世界人才評比, 資訊工業策進會科技法律研究所, https://stli.iii.org.tw/article-detail.aspx?d=8365&no=0&tp=5 (最後瀏覽日:2026/01/16)
引註此篇文章
你可能還會想看
因應京都議定書生效壓力 工廠溫室氣體減量 將訂規範

  全國能源會議於六月二十日登場,面對京都議定書生效壓力,新舊工廠未來究竟應如何減量,備受企業高度關切,經濟部已擬出政策規劃,將自二○○七年開始推動既設工廠溫室氣體減量措施,至二○一五年減量一○%(二千年為減量基準年)。   工業部門溫室氣體排放量占全國排放總量五五%,但占全國 GDP 比例逐漸減少,工業局計畫在全國能源會議中,提出多項溫室氣體減量措施。   為建立產業減量機制,工業局規劃出短、中、長期三階段減量計畫外,並提出攸關溫室氣體查核機制的能源效率計算模式,藉由會議尋求共識後,逐步落實。   據瞭解,能源效率計算機制因各國規劃採取的措施不同而所有差異,有國家採用每人耗能量為計算基準,也有以生產產品所需耗能量計算,或是每創造單位國內生產毛額所需耗用的能源計算(即能源密集度)。   工業局認為,以能源密集度做為我國工業查核指標,可顯示能源消費與該產業的邊際效應變化趨勢,有助於落實工業部門減量策略的執行,因此建議我國未來在產業溫室氣體排放查核機制上,以能源密集度為查核指標。   至於,在溫室氣體減量機制上,工業局規劃我國自二○○七年時推動既設工廠實施溫室氣體減量措施,並至二○一五年時達到溫室氣體排放密集度降低一○%的目標,而其減量的基準年為二千年;在新設廠方面,則以全球一○%標竿能源效率製程的排放密集度擬訂排放標準加以審議。

英國民航局發布航空AI監管策略三文件,以因應AI於航空領域之挑戰與機會

英國民用航空局(United Kingdom Civil Aviation Authority, CAA)於2024年12月3日發布「CAA對新興AI驅動自動化的回應」(The CAA's Response to Emerging AI-Enabled Automation)、「航空人工智慧與先進自動化監管策略」(Part A:Strategy for Regulating AI and Advanced Automation in Aerospace)以及「CAA 應用AI策略」(Part B: Strategy for Using AI in the CAA)等三份文件。首先,前者概述CAA對於AI應用於航空領域之總體立場,強調以確保安全、安保、消費者保護及環境永續等前提下,促進AI技術在相關航空領域之創新與應用;其次,「航空人工智慧與先進自動化監管策略」著重說明如何於航空領域監管AI技術之使用,以兼顧推動創新並維持安全性及穩健性;最後,「CAA 應用AI策略」則聚焦於CAA內部使用AI技術提升監管效率與決策能力的策略。 由於AI正迅速成為航空產業之重要技術,其應用範圍包含航空器、機場、地面基礎設施、空域、航太、消費者服務等,具有提高航空安全性、運作效率、環境永續性與消費者體驗之潛力。然而,相關技術風險與監管挑戰亦伴隨而至,仍需新的監管框架應對潛在風險。因此,總體而言CAA以推動AI創新技術、提升航空產業效率與永續性為目標,透過了解技術前景、建立AI通用語言,並以航空領域之五大原則為監管框架之制定核心,建立靈活的AI監管體系,維持最高水準的安全保障。五大原則及案例分述如下: (1) 安全、安保與穩健性(Safety, Security and Robustness),例如:使用AI分析航空器感測器資料進行預測維護,以利提早發現問題。 (2) 透明與可解釋性(Transparency and Explainability),例如:清楚記錄AI系統如何提出空中交通路線建議。 (3) 可質疑性與矯正機制(Contestability and Redress),例如:制定一套明確的流程,以便航空公司查詢並了解AI生成的安全建議。 (4) 公平與偏見(Fairness and Bias),例如:確保自動化旅客篩查安檢系統公平對待所有旅客。 (5) 問責與治理(Accountability and Governance),例如:明確界定AI系統在機場運營中的監管角色與職責。 .Pindent{text-indent: 2em;} .Noindent{margin-left: 2em;} .NoPindent{text-indent: 2em; margin-left: 2em;} .No2indent{margin-left: 3em;} .No2Pindent{text-indent: 2em; margin-left: 3em} .No3indent{margin-left: 4em;} .No3Pindent{text-indent: 2em; margin-left: 4em}

流行音樂「取樣」之著作權概念

  流行音樂之抄襲,於我國著作權法之評價上,是以著作權法第91條第1項「擅自以重製之方法侵害他人之著作財產權者」來評價,我國智慧財產法院已有相關判決可供參酌,如智慧財產法院 103 年刑智上易字第 47 號刑事判決。惟流行音樂之創作,往往受到流行趨勢及過去其他作品的啟發,但將任何的風格上的模仿皆認為係著作權之侵害顯然並不恰當,而旋律相似度高達九成左右者屬於抄襲固然無庸置疑,然僅取樣(sampling)使用少數詞曲,用以表達概念或致敬之使用他人創作情形,其判斷標準,或可參考美國法院之判決見解。   2003年的Newton v. Diamond案中,第九巡迴上訴法院認可「微量取用」(de minimis use)原則,認為在有數十秒的取樣情形時,當一般聽眾不認為是挪用,即構成微量取用,並無實質近似,且若未取樣原曲之重要部分,亦不構成抄襲。但2005年時,聯邦第六巡迴上訴法院在Bridgeport Music, Inc. v. Dimension Films案中,對微量取用的情形提出「明確性規則」(bright- line rule),認為必須要取得授權方得取樣;而美國最高法院則在1994年的Campbell v. Acuff-Rose案中,認為雖有擷取他曲旋律,但整體曲風不同時,採取轉化性原則,認為構成合理使用。

個人資料保護脈絡下的「綑綁式同意」

TOP