醫療物聯網(The Internet of Medical Things, IoMT)之意義為可通過網路,與其它使用者或其它裝置收集與交換資料之裝置,其可被用來讓醫師更即時地瞭解病患之狀況。
就運用的實例而言,於診斷方面,可利用裝置來連續性地收集關鍵之醫學參數,諸如血液生化檢驗數值、血壓、大腦活動和疼痛程度等等,而可幫助檢測疾病發作或活動的早期跡象,從而改善反應。於療養方面,由於患者的手術後恢復時間是整個成本花費之重要部分,故縮短療養時間是減少成本之重要要素。可利用穿戴式感測器來幫助運動、遠端監控,追蹤各種關鍵指標,警示護理人員及時作出回應,並可與遠距醫療相結合,使加速恢復更加容易。於長期護理方面,可藉由裝置之測量與監控來避免不良結果與延長之恢復期。
由於機器學習和人工智慧之共生性增長,醫療物聯網之價值正在增強。於處理來自於感測器醫療裝置之大量連續資訊流時,資料分析和機器學習可更快地提供可據以執行之結論以幫助治療過程。惟醫療物聯網亦可能面臨安全與標準化之挑戰。由於醫療保健的資料是駭客的主要目標,任何與網路連接之設備都存在安全性風險。此外,隨著相關裝置被廣泛地運用,即需要標準化以便利裝置之間的通訊,製造商和監管機構皆需尋找方法來確保裝置可在各種平台上安全地通訊。
本文為「經濟部產業技術司科技專案成果」
美國參議院近日就是否開放聯邦經費挹注於胚胎幹細胞研究進行激辯,並於 17 日通過幹細胞研究加強法( Stem Cell Research Enhancement Act of 2005, HR 810) 及其他兩項亦涉及胚胎幹細胞研究的類似法案。其中最引人注目者為 HR 810 ,該法案允許以聯邦經費資助使用人工授精之剩餘胚或病患自願捐贈之胚胎,進行幹細胞研究。這些法案的通過顯示,美國參議院打算挑戰布希政府自 2001 年所立下禁止聯邦經費挹注於胚胎幹細胞研究的禁令。 其實早在去年五月,眾議院即以 238 票贊成、 194 票反對通過 HR 810 ,布希政府在眾議院通過 HR 810 後,隨即表示一旦本法在國會立法通過,將會動用否決權推翻此一法案。根據美國法律,法案唯有經參眾議院以三分之二以上多數通過,總統始不能否決之。日前參議院係以 63 票贊成、 37 票反對通過 HR 810 ,並未達三分之二多數通過,因此本法案未來恐難逃被布希總統否決的命運。白宮發言人業已表示,該法案強迫所有的美國納稅義務人出錢資助以故意破壞人類胚胎為基礎的研究行為,法案一旦送交總統,布希總統將會行使否決權,這將會是布希總統任內首度針對國會所通過的法案動用表決權。 儘管布希總統仍持一貫反對胚胎幹細胞研究的立場,不過,美國民眾卻有支持胚胎幹細胞研究的趨勢。一項最新民調顯示,每四名受訪者中,就有三名贊成將聯邦經費用於資助胚胎幹細胞的研究。隨著美國國會大選將於十一月中旬展開,預料胚胎幹細胞研究議題將會再度成為焦點。
印度政府對新創事業之補貼 – 專利權聚焦。印度政府近年來聚焦新創創業發展,其成果更是驚人,根據一份研究報告,印度的科技產品相關新創事業光是在2016年就已達4700家以上,在當年排名全球第三,僅次於美國與英國,且預計在2020年會有2.2倍左右成長率,亦即數量翻倍。1 現今印度政府共計有超過50個新創事業獎勵補助等機制,分別由不同部門與單位執行,2 以下針對新創事業專利權補助之三大機制作介紹。 電子與資訊部門(Department of Electronics and Information Technology)、科學與工程研究委員會(Science and Engineering Research Board),以及生物科技產業研究輔助委員會(Biotechnology Industry Research Assistance Council),為三大對新創事業專利權之申請與握有,提供相關補助之印度政府部門。 (1) 電子與資訊部門之機制主要適用於人工智慧、資訊科技與軟體等產業,符合機制的新創業者申請國際專利權時,印度政府會提供15萬盧比(相當70萬台幣)或是總花費50%的補貼,補助金額看似多,但該機制有產業限制,且只施行至2019年11月30日。 (2) 科學與工程研究委員會之新創機制亦是對於專利申請有金錢上之補貼,特色在於適用產業十分廣泛,舉如化學、硬體、醫療、農業、航空、通訊、建築、能源等產業皆在機制內,重點要件在於新創業者需是已進入概念驗證(proof of concept)之階段,再者,該新創機制沒有施行期限。 (3) 生物科技產業研究輔助委員會之創新機制沒有適用產業與期限的限制,但適用對象確有限制,只限印度公民與成功展現概念驗證之創新者,該機制特色在於:補貼是對於符合標準的整個專案計畫,非只對於專利權。金額大約是20萬至500萬盧幣(約台幣10萬至200萬),或是整個專案計畫50%-90%花費。 印度政府對於新創業者之專利權相關補助共有三個機制可以選擇,優點在於新創業者可以依自己的展業別、發展階段、預算及相關因素自行選擇最有利的機制,以達到獲取補助最高的成功率。單一新創補助機制過於硬性,多數方案則可以提供選擇性與彈性。台灣就新創事業多提供貸款融資服務、資金補助計畫、或稅務減免等政策,尚未針對新創事業專利權做特定之政策優惠,或許台灣能在印度此三大專利權補助機制有可學之處。
吸引優秀外籍人才,澳洲祭出租稅優惠全球化競爭之趨勢下,各國紛紛寄出各式誘因以搶奪優秀人才,澳洲政府在今( 2006 )年 2 月中向國會提出所得稅法修正案( Tax Laws Amendment (2006 Measures No. 1) Bill 2006 ), 期能將優秀高級技術人才延攬至澳洲,使澳洲成為國際企業之營運重鎮( as a business location )。 目前根據澳洲稅法規定,因工作而在澳洲暫時居留者,從課稅角度均被視為澳洲居住者( treated as Australian residents for tax purposes ),由於澳洲對居住者採取全球課稅( taxed on worldwide income )之原則,故除來源於澳洲之所得外,在澳洲工作之外籍人才申報澳洲所得稅時,也需將其在澳洲以外之所得一併申報。雖然目前這些外籍工作者的境外投資所得或可主張租稅減免( foreign tax credits ), 但仍須進行年度所得申報,並可能被重複課稅。 新修正規定 引進暫時性居住者( temporary residents )之概念,所謂暫時性居住者係指暫時性簽證之持有者,此一簽證乃根據 1958 年移民法( Migration Act 1958 )核發。凡持有暫時性簽證者,其澳洲來源所得仍依法課稅,但其國外來源所得則免徵所得稅。另 暫時性居住者之資本利得( capital gains )依非居住者身份( non-residents )課稅;其對外國債務人提供之貸款利息所得,得免予扣繳( relief from interest withholding tax obligations ),由於企業乃扣繳之義務人,此等規定可降低企業在管理外籍員工所需付出之法規成本。 新規定無適用年限之限制,亦未規定欲適用新規定者,是否在修正通過前即應具有暫時性居住者之身分, 一般認為,修正之新規定將因租稅部分之誘因,有助於澳洲延攬優秀之外派人才。
用ChatGPT找法院判決?從Roberto Mata v. Avianca, Inc.案淺析生成式AI之侷限用ChatGPT找法院判決?從Roberto Mata v. Avianca, Inc.案淺析生成式AI之侷限 資訊工業策進會科技法律研究所 2023年09月08日 生成式AI是透過研究過去資料,以創造新內容和想法的AI技術,其應用領域包括文字、圖像及影音。以ChatGPT為例,OpenAI自2022年11月30日發布ChatGPT後,短短二個月內,全球月均用戶數即達到1億人,無疑成為民眾日常生活中最容易近用的AI科技。 惟,生成式AI大量使用後,其中的問題也逐漸浮現。例如,ChatGPT提供的回答僅是從所學習的資料中統整歸納,無法保證資料的正確性。Roberto Mata v. Avianca, Inc.案即是因律師利用ChatGPT撰寫訴狀,卻未重新審視其所提供判決之正確性,以致後續引發訴狀中所描述的判決不存在爭議。 壹、事件摘要 Roberto Mata v. Avianca, Inc.案[1]中,原告Roberto Mata於2019年8月搭乘哥倫比亞航空從薩爾瓦多飛往紐約,飛行過程中膝蓋遭空服員的推車撞傷,並於2022年2月向法院提起訴訟,要求哥倫比亞航空為空服員的疏失作出賠償;哥倫比亞航空則主張已超過《蒙特婁公約》(Montreal Convention)第35條所訂之航空器抵達日起兩年內向法院提出損害賠償之請求時效。 R然而,法院審理過程中發現原告訴狀內引用之六個判決無法從判決系統中查詢,進而質疑判決之真實性。原告律師Steven A. Schwartz因而坦承訴狀中引用的六個判決是ChatGPT所提供,並宣稱針對ChatGPT所提供的判決,曾多次向ChatGPT確認該判決之正確性[2]。 貳、生成式AI應用之潛在風險 雖然運用生成式AI技術並結合自身專業知識執行特定任務,可能有助於提升效率,惟,從前述Roberto Mata v. Avianca, Inc.案亦可看出,依目前生成式AI技術之發展,仍可能產生資訊正確性疑慮。以下彙整生成式AI應用之8大潛在風險[3]: 一、能源使用及對環境危害 相較於傳統機器學習,生成式AI模型訓練將耗費更多運算資源與能源。根據波士頓大學電腦科學系Kate Saenko副教授表示,OpenAI的GPT-3模型擁有1,750億個參數,約會消耗1,287兆瓦/時的電力,並排放552噸二氧化碳。亦即,每當向生成式AI下一個指令,其所消耗的能源量相較於一般搜尋引擎將可能高出4至5倍[4]。 二、能力超出預期(Capability Overhang) 運算系統的黑盒子可能發展出超乎開發人員或使用者想像的隱藏功能,此發展將會對人類帶來新的助力還是成為危險的阻力,則會隨著使用者之間的相互作用而定。 三、輸出結果有偏見 生成式AI通常是利用公開資料進行訓練,若輸入資料在訓練時未受監督,而帶有真實世界既存的刻板印象(如語言、種族、性別、性取向、能力、文化等),據此建立之AI模型輸出結果可能帶有偏見。 四、智慧財產權疑慮 生成式AI進行模型訓練時,需仰賴大量網路資料或從其他大型資料庫蒐集訓練資料。然而,若原始資料來源不明確,可能引發取得資料未經同意或違反授權條款之疑慮,導致生成的內容存在侵權風險。 五、缺乏驗證事實功能 生成式AI時常提供看似正確卻與實際情形不符的回覆,若使用者誤信該答案即可能帶來風險。另外,生成式AI屬於持續動態發展的資訊生態系統,當產出結果有偏誤時,若沒有大規模的人為干預恐難以有效解決此問題。 六、數位犯罪增加與資安攻擊 過去由人工產製的釣魚郵件或網站可能受限於技術限制而容易被識破,然而,生成式AI能夠快速建立具高度說服力的各種擬真資料,降低詐騙的進入門檻。又,駭客亦有可能在不熟悉技術的情況下,利用AI進一步找出資安弱點或攻擊方法,增加防禦難度。 七、敏感資料外洩 使用雲端服務提供商所建立的生成式AI時,由於輸入的資料存儲於外部伺服器,若要追蹤或刪除有一定難度,若遭有心人士利用而導致濫用、攻擊或竄改,將可能產生資料外洩的風險。 八、影子AI(Shadow AI) 影子AI係指開發者未知或無法控制之AI使用情境。隨著AI模型複雜性增加,若開發人員與使用者未進行充分溝通,或使用者在未經充分指導下使用 AI 工具,將可能產生無法預期之風險。 參、事件評析 在Roberto Mata v. Avianca, Inc.案中,法院關注的焦點在於律師的行為,而非對AI技術使用的批判。法院認為,隨著技術的進步,利用可信賴的AI工具作為協助用途並無不當,惟,律師應踐行其專業素養,確保所提交文件之正確性[5]。 當AI科技發展逐漸朝向自主與獨立的方向前進,仍需注意生成式AI使用上之侷限。當個人在使用生成式AI時,需具備獨立思考判斷的能力,並驗證產出結果之正確性,不宜全盤接受生成式AI提供之回答。針對企業或具高度專業領域人士使用生成式AI時,除確認結果正確性外,更需注意資料保護及治理議題,例如建立AI工具合理使用情境及加強員工使用相關工具之教育訓練。在成本能負擔的情況下,可選擇透過企業內部的基礎設施訓練AI模型,或是在訓練模型前確保敏感資料已經加密或匿名。並應注意自身行業領域相關法規之更新或頒布,以適時調整資料使用之方式。 雖目前生成式AI仍有其使用之侷限,仍應抱持開放的態度,在技術使用與風險預防之間取得平衡,以能夠在技術發展的同時,更好地學習新興科技工具之使用。 [1]Mata v. Avianca, Inc., 1:22-cv-01461, (S.D.N.Y.). [2]Benjamin Weiser, Here’s What Happens When Your Lawyer Uses ChatGPT, The New York Times, May 27, 2023, https://www.nytimes.com/2023/05/27/nyregion/avianca-airline-lawsuit-chatgpt.html (last visited Aug. 4, 2023). [3]Boston Consulting Group [BCG], The CEO’s Roadmap on Generative AI (Mar. 2023), https://media-publications.bcg.com/BCG-Executive-Perspectives-CEOs-Roadmap-on-Generative-AI.pdf (last visited Aug. 29, 2023). [4]Kate Saenko, Is generative AI bad for the environment? A computer scientist explains the carbon footprint of ChatGPT and its cousins, The Conversation (May 23, 2023.), https://theconversation.com/is-generative-ai-bad-for-the-environment-a-computer-scientist-explains-the-carbon-footprint-of-chatgpt-and-its-cousins-204096 (last visited Sep. 7, 2023). [5]Robert Lufrano, ChatGPT and the Limits of AI in Legal Research, National Law Review, Volume XIII, Number 195 (Mar. 2023), https://www.natlawreview.com/article/chatgpt-and-limits-ai-legal-research (last visited Aug. 29, 2023).