醫療物聯網(The Internet of Medical Things, IoMT)之意義為可通過網路,與其它使用者或其它裝置收集與交換資料之裝置,其可被用來讓醫師更即時地瞭解病患之狀況。
就運用的實例而言,於診斷方面,可利用裝置來連續性地收集關鍵之醫學參數,諸如血液生化檢驗數值、血壓、大腦活動和疼痛程度等等,而可幫助檢測疾病發作或活動的早期跡象,從而改善反應。於療養方面,由於患者的手術後恢復時間是整個成本花費之重要部分,故縮短療養時間是減少成本之重要要素。可利用穿戴式感測器來幫助運動、遠端監控,追蹤各種關鍵指標,警示護理人員及時作出回應,並可與遠距醫療相結合,使加速恢復更加容易。於長期護理方面,可藉由裝置之測量與監控來避免不良結果與延長之恢復期。
由於機器學習和人工智慧之共生性增長,醫療物聯網之價值正在增強。於處理來自於感測器醫療裝置之大量連續資訊流時,資料分析和機器學習可更快地提供可據以執行之結論以幫助治療過程。惟醫療物聯網亦可能面臨安全與標準化之挑戰。由於醫療保健的資料是駭客的主要目標,任何與網路連接之設備都存在安全性風險。此外,隨著相關裝置被廣泛地運用,即需要標準化以便利裝置之間的通訊,製造商和監管機構皆需尋找方法來確保裝置可在各種平台上安全地通訊。
本文為「經濟部產業技術司科技專案成果」
澳洲於去(2012)年通過「智慧財產權法修正案」 (Intellectual Property Laws Amendment Act 2012),主要修正條文已於今(2013)年4月15日起正式施行。此次的修法大幅度提高了可專利性的審查標準,為澳洲專利制度帶來重大變革。新法適用於2013年4月15日以後提出實體審查申請之專利申請案,在新法施行後專利申請案將受到更嚴格的審查。 重要修正如下: ‧新法去除了舊專利法關於先前技術的地理區域範圍的限制。將其他各國的先前技術也一併納入考量,規範較舊法更為國際化。 ‧新法只要求所屬技術領域具有通常知識者「可能了解」且「技術相關」即可,放寬了用來判斷進步性根據之先前技術標準,使得符合進步性的要求較舊法為提高。 ‧新專利法要求專利說明書需揭露系爭發明特定的(specific)、主要的(substantial)、可信的(credible)用途,以滿足實用性的要件。此外,專利說明書上之描述必須清楚且完整,使所屬技術領域中具有通常知識者得以了解文件內容並可據以實施, ‧新法對於可專利性的認定改採「概然性權衡」(balance of probabilities)標準,亦即若專利審查員認為,未來在進行專利有效性審理,法院有超過50%的機率認定系爭發明不具可專利性時,審查委員即得駁回該申請案。 ‧增加了修正專利說明書時禁止加入新事項的限制規定,對於專利的申請益趨嚴格。 此次修法是澳洲專利制度近20年以來的最大變革,經過此次修正可預見未來申請取得澳洲專利的難度將大幅提升。更值得注意的是,由此次修正,可發現澳洲專利制度已向大多數國家的規範靠攏,使得澳洲專利法與國際間其他國家如美國、歐盟等國家的規定更為協調一致。
日本發布成為可信賴夥伴的資料治理手冊,呼籲企業應建立並實施貫穿資料生命週期的資料治理機制日本獨立行政法人情報處理推進機構於2025年1月28日發布《成為可信賴夥伴的資料治理手冊(下稱《手冊》)》,旨在呼籲企業建立與實施「貫穿資料生命週期的資料治理機制」,藉此將資料價值最大化,並將資料風險最小化。 《手冊》指出,資料驅動著社會發展,資料治理的重要性亦隨之提升。資料治理係指企業或組織透過機制、規則與制度等多種層面的策略性手段管理其重要資料資產,並透過制定相應的政策與規則,確保資料的品質與安全性。同時,考量資料具備易於複製、竄改且流通難以控制的特性,建立完善的資料治理機制亦有助於在共享資料的過程中維持其品質及安全性。推動資料治理的基礎,則仰賴適當且有效的資料管理機制,亦即確保在蒐集、處理、儲存與使用等資料生命週期各階段皆能落實資料管理機制。然而,資料管理本身要能發揮效益,仍須依賴組織具備足夠的資料成熟度,即具備正確處理與應用資料的整體能力,方能系統性的落實管理與治理工作。 根據《手冊》內容,透過資料治理,企業或組織將能確保資料品質、透明度及安全性,並基於可信任的資料進行決策,進而有效提升決策精準度,實現風險管理與法規遵循,進一步強化自身在資料經濟中的「價值」、「信任」與「公正性」。 我國企業如欲逐步建立並落實貫穿資料生命週期的資料治理機制,可參考資訊工業策進會科技法律研究所創意智財中心所發布之《重要數位資料治理暨管理制度規範》,作為制度設計與實務推動之參考,以強化資料治理能力。 本文為資策會科法所創智中心完成之著作,非經同意或授權,不得為轉載、公開播送、公開傳輸、改作或重製等利用行為。 本文同步刊登於TIPS網站(https://www.tips.org.tw)
全美各州醫療委員會聯合會發布人工智慧(AI)治理指引,並要求醫師為AI之利用結果負最終責任全美各州醫療委員會聯合會(The Federation of State Medical Boards, FSMB)於2024年4月發布「引導人工智慧以負責任與符合倫理方式融入臨床實務」(Navigating the Responsible and Ethical Incorporation of Artificial Intelligence into Clinical Practice)指引,明確概述醫師於利用AI協助提供照護時可採取之步驟,以履行其倫理與專業職責,期能藉此降低對患者造成傷害之風險;本指引之特色在於,其要求醫師為AI之利用結果負最終之責任。 FSMB 向各州醫療委員會與其他利害關係人所提供之原則與建議如下,以支持對包含AI之臨床照護進行負責任與符合倫理之監管: (1)透明度與揭露(Transparency and Disclosure): 應要求維持於醫療照護領域使用AI之透明度;各州醫療委員會應制定明確之指導方針,向患者揭露AI之使用情況,其有助於患者與醫師之理解,但不會造成不必要之行政負擔;FSMB 應制定文件,詳細說明最常用之AI工具之功能與局限性,以協助醫療委員會發揮監管者之角色,並應制定常見問題與最佳實務文件,作為提供照護時利用AI方面關於透明度之資源。 (2)教育與理解(Education and Understanding): FSMB及其於醫學教育界之合作夥伴,應為醫師、醫療委員會與患者,確認有關醫療照護中AI之結構化教育資源,該等資源應包括協助瞭解AI如何運作、其優點、潛在風險以及對患者照護之影響。 (3)負責任之使用與問責(Responsible Use and Accountability): 開發人員應協助醫師瞭解何時、以及如何於患者之照護中利用AI工具;選擇AI工具支援臨床決策之醫院系統、保險公司或其他機構應向醫師提供有關AI工具之教育、存取各工具之性能報告,並應設計一個定期檢視工具功效的流程;AI工具應以得使各州醫療委員會能稽核與理解之方式設計,以便適當評估依賴工具輸出結果之醫師是否偏離照護標準(standard of care);FSMB 應支持各州醫療委員會針對臨床醫師如何負責任、可問責地使用AI之解釋。 (4)公平性與近用(Equity and Access): 應努力確保所有患者皆能公平地近用AI帶來之好處;FSMB與各州醫療委員會致力於以下原則:醫療人員所提供之照護是公平的、且不受基於種族、民族或其他形式歧視之偏見影響;FSMB應與其他利害關係人一起理解並解決演算法偏差問題。 (5)隱私與資料安全(Privacy and Data Security): AI工具之開發者必須實施嚴格之保護措施,以保護AI開發與評估時所利用之患者資料,通常情況下應告知患者資料如何被利用,且FSMB應與行業利害相關人一起制定AI系統使用與散布患者資料之政策,包括針對AI開發或評估中使用之患者資料之最低資料保護措施。 (6)監督與監管(Oversight and Regulation): 各州醫療委員會必須保留對於提供醫療服務時,不當應用AI工具之醫生進行紀律處分之權力,其包括問責議題之考慮,特別是當AI系統變得更加自主時;各州醫療委員會應審查其管轄範圍內如何對「醫療行為」(practice of medicine)進行法律定義,以確保對提供醫療照護、人力或其他方面進行持續之監管監督。 (7)法律法規之持續審查與調整(Continual Review and Adaptation of Law and Regulations): 各州醫療委員會應在FSMB之支持下,隨著AI之不斷發展,持續檢視與更新與AI相關之指引與法規;政策制定者應考慮AI對基本法律原則的影響,例如醫療行為之定義以及AI對企業醫學實務之影響;FSMB 應建立一個專門團隊,持續檢視與調整AI指引與法規。 本指引指出,AI工具通常無能力取代醫師之專業判斷、道德責任或對州醫療委員會之責任,醫療行為中之關鍵職業責任始終為確保診斷、臨床決策與建議不存在偏差。與用於診斷或治療疾病之任何其他工具或鑑別方法相同,醫療專業人員有責任確保基於證據結論之準確性與真實性,因此於將AI系統用於患者照護前,醫師應以合理努力識別與解決偏差(如虛假或不準確之資訊等)。
電信業者提供視訊服務之外國法制研析