OECD:汙染性能源稅收過低無法激勵低碳轉型

  經濟合作與發展組織(OECD)2019年9月20日根據《2019年能源使用稅(Taxing Energy Use 2019)》報告指出,汙染性能源會造成地球與人類健康的危害,而課徵「汙染性能源稅」是降低其排放的有效方法,且稅收尚可用於協助低碳轉型,但在報告所研究的44個國家能源排放量佔全球80%以上,與能源有關的二氧化碳排放中卻有70%未徵稅,課徵的汙染燃料稅過低,無法促使其改用較為清潔的能源(cleaner energy),而無法鼓勵低碳能源轉型。

  能源稅中,道路燃料稅相對較高,但無法反映其造成環境損害的成本;煤炭稅在多數國家中幾乎為零,但煤炭的碳排放幾乎佔了能源碳排放的一半;天然氣是較為潔淨的能源,其稅收通常較高。在非道路的能源碳排放中,有97%被徵稅,但44個國家中只有4個國家(丹麥、荷蘭、挪威、瑞士)的徵稅在每噸30歐元以上,遠低於環境損害的程度,近年來甚至有國家降低能源稅。

  該報告表示,改善稅收政策、為低碳技術提供公平的機會,將有助於將投資轉向更環保的選擇,且額外的稅收可用於社會目的,例如降低所得稅、增加基礎設施或醫療健保支出,OECD未來將衡量減排與其他社會目標(如健康與工作),採取有效的激勵措施減少碳排放,並呼籲各國政府應正視此一問題。

相關連結
相關附件
※ OECD:汙染性能源稅收過低無法激勵低碳轉型, 資訊工業策進會科技法律研究所, https://stli.iii.org.tw//article-detail.aspx?d=8379&no=67&tp=1 (最後瀏覽日:2026/01/26)
引註此篇文章
你可能還會想看
法國資料保護機關要求Clearview AI刪除非法蒐集的個人資料

  法國國家資訊自由委員會(Commission nationale de l’informatique et des libertés, CNIL)自2020年5月起陸續收到民眾對臉部辨識軟體公司Clearview AI的投訴,並展開調查。嗣後,CNIL於2021年12月16公布調查結果,認為Clearview AI公司蒐集及使用生物特徵識別資料(biometric data)的行為,違反《一般資料保護規範》(General Data Protection Regulation,GDPR)的規定,分別為: 非法處理個人資料:個人資料的處理必須符合GDPR第6條所列舉之任一法律依據,始得合法。Clearview AI公司從社群網路蒐集大量全球公民的照片與影音資料,並用於臉部辨識軟體的開發,其過程皆未取得當事人之同意,故缺乏個人資料處理的合法性依據。 欠缺保障個資主體的權利:Clearview AI公司未考慮到GDPR第12條、第15條及第17條個資主體權利之行使,特別是資料查閱權,並且忽視當事人的個資刪除請求。   因此,CNIL要求Clearview AI公司必須於兩個月內改善上述違法狀態,包括:(1)在沒有法律依據的情況下,停止蒐集及使用法國人民的個資;(2)促進個資主體行使其權利,並落實個資刪除之請求。若Clearview AI公司未能於此期限內向CNIL提交法令遵循之證明,則CNIL可依據GDPR進行裁罰,可處以最高 2000萬歐元的罰鍰,或公司全球年收入的4%。

台灣智慧財產管理規範(TIPS)之發展與現況

歐盟委員會發布NIS 2實施條例以定義資安重大事件

.Pindent{text-indent: 2em;} .Noindent{margin-left: 2em;} .NoPindent{text-indent: 2em; margin-left: 2em;} .No2indent{margin-left: 3em;} .No2Pindent{text-indent: 2em; margin-left: 3em} .No3indent{margin-left: 4em;} .No3Pindent{text-indent: 2em; margin-left: 4em} 歐盟委員會於2024年10月17日通過了歐盟第2022/2555號《於歐盟實施高度共通程度之資安措施指令》(Directive (EU) 2022/2555 on measures for a high common level of cybersecurity across the Union,下稱NIS 2)的第一個實施條例(下稱「實施條例」)。NIS 2要求企業發生重大事件(Significant incident)後24小時內,應向會員國主管機關通報,依實施條例之規定,符合以下任一條件會被視為重大事件: 1. 造成超過50萬歐元或上一年度營業額5%以上的直接財務損失。 2. 造成商業機密洩漏。 3. 已造成或能造成自然人死亡。 4. 對自然人健康已造成或能造成大量傷害。 5. 疑似惡意且未經授權的存取網路和資訊系統造成嚴重運作中斷。 6. 反覆發生的事件。 7. 符合第5條至第14條特定資訊服務的事件。 實施條例主要在於補充上述條件的第6項及第7項。第6項規定於實施條例的第4條,定義「反覆發生」的要件,包含:(1)6個月內發生兩次;(2)有相同的根本原因;(3)大致符合超過50萬歐元或年營業額5%以上的直接財務損失。第7項則在實施條例的第5條至第14條列舉特定資訊服務提供者的重大事件條件,而其他資訊服務則包含DNS(domain name system)服務、TLD(top-level domain)網域註冊管理、雲端運算服務、資料中心服務、內容交換網路、託管服務、網路商城、搜尋引擎、社群網路服務、信託服務等,對於不同服務可能造成的影響各別列舉視為重大事件的條件。 歐盟委員會發布該實施條例確立何謂重大事件,並依歐盟考量資訊安全威脅所制定的NIS 2,將公共電子通訊網路或服務、會員國等進行連結,要求會員國設置資訊安全主管機關、危機管理機構、資訊安全聯絡點等義務,建立資訊安全通報機制,確保歐盟有整體的資訊安全戰略及框架,阻止潛在危機擴散。我國於2018年已制定《資通安全事件通報及應變辦法》並建立四級資通安全事件的標準,其標準以機敏或業務資訊遭洩漏對機密性的影響、資通系統遭竄改對完整性的影響,以及資通系統運作遭中斷對可用性的影響為依據,但並未對不同類型服務有制定更精細的定義。歐盟實施條例中有關重大事件之定義,可做為我國相關主管機關參考對象,研擬更準確的資通安全事件標準。

用ChatGPT找法院判決?從Roberto Mata v. Avianca, Inc.案淺析生成式AI之侷限

用ChatGPT找法院判決?從Roberto Mata v. Avianca, Inc.案淺析生成式AI之侷限 資訊工業策進會科技法律研究所 2023年09月08日 生成式AI是透過研究過去資料,以創造新內容和想法的AI技術,其應用領域包括文字、圖像及影音。以ChatGPT為例,OpenAI自2022年11月30日發布ChatGPT後,短短二個月內,全球月均用戶數即達到1億人,無疑成為民眾日常生活中最容易近用的AI科技。 惟,生成式AI大量使用後,其中的問題也逐漸浮現。例如,ChatGPT提供的回答僅是從所學習的資料中統整歸納,無法保證資料的正確性。Roberto Mata v. Avianca, Inc.案即是因律師利用ChatGPT撰寫訴狀,卻未重新審視其所提供判決之正確性,以致後續引發訴狀中所描述的判決不存在爭議。 壹、事件摘要 Roberto Mata v. Avianca, Inc.案[1]中,原告Roberto Mata於2019年8月搭乘哥倫比亞航空從薩爾瓦多飛往紐約,飛行過程中膝蓋遭空服員的推車撞傷,並於2022年2月向法院提起訴訟,要求哥倫比亞航空為空服員的疏失作出賠償;哥倫比亞航空則主張已超過《蒙特婁公約》(Montreal Convention)第35條所訂之航空器抵達日起兩年內向法院提出損害賠償之請求時效。 R然而,法院審理過程中發現原告訴狀內引用之六個判決無法從判決系統中查詢,進而質疑判決之真實性。原告律師Steven A. Schwartz因而坦承訴狀中引用的六個判決是ChatGPT所提供,並宣稱針對ChatGPT所提供的判決,曾多次向ChatGPT確認該判決之正確性[2]。 貳、生成式AI應用之潛在風險 雖然運用生成式AI技術並結合自身專業知識執行特定任務,可能有助於提升效率,惟,從前述Roberto Mata v. Avianca, Inc.案亦可看出,依目前生成式AI技術之發展,仍可能產生資訊正確性疑慮。以下彙整生成式AI應用之8大潛在風險[3]: 一、能源使用及對環境危害 相較於傳統機器學習,生成式AI模型訓練將耗費更多運算資源與能源。根據波士頓大學電腦科學系Kate Saenko副教授表示,OpenAI的GPT-3模型擁有1,750億個參數,約會消耗1,287兆瓦/時的電力,並排放552噸二氧化碳。亦即,每當向生成式AI下一個指令,其所消耗的能源量相較於一般搜尋引擎將可能高出4至5倍[4]。 二、能力超出預期(Capability Overhang) 運算系統的黑盒子可能發展出超乎開發人員或使用者想像的隱藏功能,此發展將會對人類帶來新的助力還是成為危險的阻力,則會隨著使用者之間的相互作用而定。 三、輸出結果有偏見 生成式AI通常是利用公開資料進行訓練,若輸入資料在訓練時未受監督,而帶有真實世界既存的刻板印象(如語言、種族、性別、性取向、能力、文化等),據此建立之AI模型輸出結果可能帶有偏見。 四、智慧財產權疑慮 生成式AI進行模型訓練時,需仰賴大量網路資料或從其他大型資料庫蒐集訓練資料。然而,若原始資料來源不明確,可能引發取得資料未經同意或違反授權條款之疑慮,導致生成的內容存在侵權風險。 五、缺乏驗證事實功能 生成式AI時常提供看似正確卻與實際情形不符的回覆,若使用者誤信該答案即可能帶來風險。另外,生成式AI屬於持續動態發展的資訊生態系統,當產出結果有偏誤時,若沒有大規模的人為干預恐難以有效解決此問題。 六、數位犯罪增加與資安攻擊 過去由人工產製的釣魚郵件或網站可能受限於技術限制而容易被識破,然而,生成式AI能夠快速建立具高度說服力的各種擬真資料,降低詐騙的進入門檻。又,駭客亦有可能在不熟悉技術的情況下,利用AI進一步找出資安弱點或攻擊方法,增加防禦難度。 七、敏感資料外洩 使用雲端服務提供商所建立的生成式AI時,由於輸入的資料存儲於外部伺服器,若要追蹤或刪除有一定難度,若遭有心人士利用而導致濫用、攻擊或竄改,將可能產生資料外洩的風險。 八、影子AI(Shadow AI) 影子AI係指開發者未知或無法控制之AI使用情境。隨著AI模型複雜性增加,若開發人員與使用者未進行充分溝通,或使用者在未經充分指導下使用 AI 工具,將可能產生無法預期之風險。 參、事件評析 在Roberto Mata v. Avianca, Inc.案中,法院關注的焦點在於律師的行為,而非對AI技術使用的批判。法院認為,隨著技術的進步,利用可信賴的AI工具作為協助用途並無不當,惟,律師應踐行其專業素養,確保所提交文件之正確性[5]。 當AI科技發展逐漸朝向自主與獨立的方向前進,仍需注意生成式AI使用上之侷限。當個人在使用生成式AI時,需具備獨立思考判斷的能力,並驗證產出結果之正確性,不宜全盤接受生成式AI提供之回答。針對企業或具高度專業領域人士使用生成式AI時,除確認結果正確性外,更需注意資料保護及治理議題,例如建立AI工具合理使用情境及加強員工使用相關工具之教育訓練。在成本能負擔的情況下,可選擇透過企業內部的基礎設施訓練AI模型,或是在訓練模型前確保敏感資料已經加密或匿名。並應注意自身行業領域相關法規之更新或頒布,以適時調整資料使用之方式。 雖目前生成式AI仍有其使用之侷限,仍應抱持開放的態度,在技術使用與風險預防之間取得平衡,以能夠在技術發展的同時,更好地學習新興科技工具之使用。 [1]Mata v. Avianca, Inc., 1:22-cv-01461, (S.D.N.Y.). [2]Benjamin Weiser, Here’s What Happens When Your Lawyer Uses ChatGPT, The New York Times, May 27, 2023, https://www.nytimes.com/2023/05/27/nyregion/avianca-airline-lawsuit-chatgpt.html (last visited Aug. 4, 2023). [3]Boston Consulting Group [BCG], The CEO’s Roadmap on Generative AI (Mar. 2023), https://media-publications.bcg.com/BCG-Executive-Perspectives-CEOs-Roadmap-on-Generative-AI.pdf (last visited Aug. 29, 2023). [4]Kate Saenko, Is generative AI bad for the environment? A computer scientist explains the carbon footprint of ChatGPT and its cousins, The Conversation (May 23, 2023.), https://theconversation.com/is-generative-ai-bad-for-the-environment-a-computer-scientist-explains-the-carbon-footprint-of-chatgpt-and-its-cousins-204096 (last visited Sep. 7, 2023). [5]Robert Lufrano, ChatGPT and the Limits of AI in Legal Research, National Law Review, Volume XIII, Number 195 (Mar. 2023), https://www.natlawreview.com/article/chatgpt-and-limits-ai-legal-research (last visited Aug. 29, 2023).

TOP