美國聯邦資料戰略〈2020年行動計畫〉

  美國白宮於2018年3月發布〈總統管理方案(President’s Management Agenda)〉,其中發展「聯邦資料戰略(Federal Data Strategy)」,將資料作為戰略資產,藉以發展經濟、提高聯邦政府效能、促進監督與透明度,為方案中重要之工作目標之一。「聯邦資料戰略」之架構上主要包括四個組成部分,以指導聯邦資料之管理和使用:1.使命宣言:闡明戰略之意圖與核心目的;2.原則:有十大恆定原則對於機關進行指導;3.實作規範:有四十項實作規範指導機關如何利用資料之價值;4.年度行動計畫:以可衡量之活動來實踐這些實作規範。

  於2019年12月23日,〈2020年行動計畫〉之最終版正式發布,其將建立堅實之基礎,在未來十年內支持戰略之實踐。詳言之,〈2020年行動計畫〉之內涵主要包含三大部分與二十個行動:

  1. 機關行動:旨在支持機關利用其資料資產,包括六大行動:(1)行動1:確認用於回答對於機關而言具有優先性之問題所需之資料;(2)行動2:將機關之資料治理制度化;(3)行動3:評估資料與相關基礎設施之成熟度;(4)行動4:確認提高員工資料技能之機會;(5)行動5:確認用於機關開放資料計劃之優先資料資產;(6)行動6:發布與更新資料庫存。
  2. 實踐共同體之行動:由特定機關或一群機關就一共通主題所採取之行動,可加速並簡化現有要求之執行,包括下列四大活動:(1)行動7:成立聯邦首席資料官委員會;(2)行動8:改善用於AI研究與發展之資料與模型資源;(3)行動9:改善財務管理資料標準;(4)行動10:將地理空間資料實務整合至聯邦資料事業中。
  3. 共享解決方案行動:為所有機關之利益、由單一機關或委員會試行或發展之活動:(1)行動11:開發聯邦事業資料資源儲存庫;(2)行動12:創建美國預算管理局聯邦資料政策委員會;(3)行動13:制定策畫之資料技能目錄;(4)行動14:制定資料倫理框架;(5)行動15:開發資料保護工具組;(6)行動16:試行一站式之標準研究應用程序;(7)行動17:試行一種自動化之資訊收集評論工具,該工具支持資料庫存之創建與更新;(8)行動18:試行用於聯邦機構之增強型資料管理工具;(9)行動19:制定資料品質評估與報告指引;(10)行動20:發展資料標準之儲存庫。

  〈2020年行動計畫〉確定機關之初步行動,其對建立流程、建立能力、調整現有工作以更好地將資料作為戰略資產至關重要。未來之年度行動計畫將會在〈2020年行動計畫〉之基礎上進一步發展出針對聯邦資料管理之協調方案。

本文為「經濟部產業技術司科技專案成果」

相關連結
相關附件
你可能會想參加
※ 美國聯邦資料戰略〈2020年行動計畫〉, 資訊工業策進會科技法律研究所, https://stli.iii.org.tw/article-detail.aspx?d=8390&no=0&tp=1 (最後瀏覽日:2025/11/21)
引註此篇文章
你可能還會想看
英國BSI發布自駕車發展與評估控制系統指引

  英國標準協會(British Standards Institution, BSI)於2020年4月30日發布「PAS 1880:2020:自駕車控制系統開發及評估指引(PAS 1880:2020: Guidelines for developing and assessing control systems for automated vehicles)」,該文件提供一系列的準則,提供自駕車研發者於發展控制系統時可安全有效的進行布建;本文件所涵蓋之自駕車類型主要為於(研發者)所設計及規劃之特定運行範圍內(operational design domain,以下簡稱ODD)下不需人工介入即可運送旅客與貨物者。   指引中就自駕車之控制系統設計進行分類,並提出研發者應針對不同目的與重點進行說明以及相關應遵循事項,其中應包含以下項目: 任務:自駕車之任務應被定義。 ODD:自駕車之ODD應被定義並且應可涵蓋其所有執行任務之面向。 感知運作:於任務中感知運作系統執行時,自駕車應可判斷其是否遵循ODD之範圍,並可提供相關資料予決策系統。 決策:當決策系統執行時,自駕車應可實施所有為達成任務所決策規劃之活動。 控制運作:當控制運作系統執行時,自駕車應可於正常情況下控制其動作以完成任務,並可於無法執行正確行動時採取合適之措施。 監控運作:當監控運作系統執行時,於整個任務過程中,自駕車應可監控其自身之運作。 人身安全、系統安全與有效(Safe, secure and effective):自駕車應可於所有時刻皆保持運作之人身安全、系統安全性與有效性。

新加坡網路安全局發布人工智慧系統安全指南,以降低AI系統潛在風險

新加坡網路安全局(Cyber Security Agency of Singapore, CSA)於2024年10月15日發布人工智慧系統安全指南(Guidelines on Securing AI Systems),旨在強化AI系統安全,協助組織以安全之方式運用AI,降低潛在風險。 該指南將AI系統生命週期分成五個關鍵階段,分別針對各階段的安全風險,提出相關防範措施: (1)規劃與設計:提高AI安全風險認知能力,進行安全風險評估。 (2)開發:提升訓練資料、模型、應用程式介面與軟體庫之供應安全,確保供應商遵守安全政策與國際標準或進行風險管理;並辨識、追蹤及保護AI相關資產(例如模型、資料、輸入指令),以確保AI開發環境安全。 (3)部署:適用標準安全措施(例如存取控制、日誌記錄),並建立事件管理程序。 (4)運作與維護:持續監控AI系統的輸入和輸出,偵測異常與潛在攻擊,並建立漏洞揭露流程。 (5)壽命終期:應根據相關行業標準或法規,對資料與模型進行適當之處理、銷毀,防止未經授權之存取。 CSA期待該指南發布後,將有助於預防供應鏈攻擊(supply chain attacks)、對抗式機器學習攻擊(Adversarial Machine Learning attacks)等安全風險,確保AI系統的整體安全與穩定運行。

<開原碼條例>建置醫療資源共享架構

  UCLA醫學中心以開放原始碼軟體Zope建置資訊系統,展開一項稱為「治療成效開放式架構」(OIO, Open Infrastructure for Outcomes) 的計畫,構築起未來醫療資訊系統的新基石。讓治療成效的資訊,能在一個共通的平台架構上進行資源分享。   長期以來,醫療資訊系統面臨的挑戰主要來自於下列三個面向:一、如何讓資訊系統提供令人滿意的服務功能,以取代將醫療記錄登載在紙張上的傳統方式。二、資訊系統的需求經常會改變,如何快速因應系統的改變需求。三、如何與其他醫療團隊夥伴,共同分享資料與工具。   OIO計劃透過資訊共享可加速醫療研究。開放式架構計畫的主要目的,並不是用來要求臨床工作者與醫療研究中心分享病歷資料,而是提供一個分享管理工具的機制,讓使用者能夠利用這些管理工具,進行資料的收集與分析,並和特定的診療研究人員進行溝通,而透過系統安全的機制,在過程當中並不會讓其他人得知資料內容。不過,如果有人想要進行管理工具或資料的進一步加值利用,僅需額外投入相當小的成本。   另外, 開放式架構計畫的設計極具彈性,除了目前所專注的治療成效資訊統計之外,其系統概念也可以用來管理客戶資訊、進銷存資訊、會計資訊等。整個系統開發環境是針對使用者而設計,而非程式人員,並且以網頁應用程式來實作,力求操作的便利性,目的之一是讓使用者能夠動手創造出自己所需的表格資料。另一方面,設計上也面對來自於法律與技術層面的挑戰,例如取得病患的同意及對系統的信任感,促使這套系統在實作時,必須能夠提供高度的修改彈性與安全性。   由於 OIO 在設計上,包含低成本、高效益、使用者導向、架構具有彈性等特色,並以開放源碼開發模式來鼓勵使用者測試及提供回饋意見,目前的應用效果持續擴大中。

RFID應用與相關法制問題研析-個人資料在商業應用上的界限

TOP