歐盟2020年人工智慧白皮書

  歐盟執委會於2020年2月19日發布「人工智慧白皮書」(White Paper on Artificial Intelligence: a European approach to excellence and trust),以打造卓越且可信賴的人工智慧為目標。歐盟認為在推動數位轉型過程中的一切努力,均不應脫離歐盟以人為本的最高價值,包含:開放(open)、公平(fair)、多元(diverse)、民主(democratic)與信任(confident),因此在人工智慧的發展上,除了追求技術的持續精進與卓越外,打造可信賴的人工智慧亦是歐盟所重視的價值。

  歐盟執委會於人工智慧白皮書中分別就如何追求「卓越」與「可信賴」兩大目標,提出具體的措施與建議。在促進人工智慧卓越方面,執委會建議的措施包含:建立人工智慧與機器人領域的公私協力;強化人工智慧研究中心的發展與聯繫;每個成員國內應至少有一個以人工智慧為主題的數位創新中心;歐盟執委會與歐洲投資基金(European Investment Fund)將率先在2020年第1季為人工智慧開發與使用提供1億歐元融資;運用人工智慧提高政府採購流程效率;支持政府採購人工智慧系統等。上述各項措施將與歐盟「展望歐洲」(Horizon Europe)科研計畫密切結合。

  而在建立對人工智慧的信賴方面,執委會建議的措施則包含:建立有效控制人工智慧創新風險但不箝制創新的法規;具高風險的人工智慧系統應透明化、可追溯且可控制;政府對人工智慧系統的監管程度應不低於對醫美產品、汽車或玩具;應確保所使用的資料不帶有偏見;廣泛探討遠端生物辨識技術的合理運用等。歐盟執委會將持續徵集對人工智慧白皮書的公眾意見,並據以在2020年底前提出成員國協力計畫(Coordinated Plan)之建議。

本文為「經濟部產業技術司科技專案成果」

相關連結
相關附件
你可能會想參加
※ 歐盟2020年人工智慧白皮書, 資訊工業策進會科技法律研究所, https://stli.iii.org.tw/article-detail.aspx?d=8417&no=645&tp=5 (最後瀏覽日:2026/02/17)
引註此篇文章
你可能還會想看
執法部門無搜索令要求提供手機位置記錄並未違憲

  美國聯邦第六巡迴上訴法院於2016年4月13日就U.S. v. Timothy Ivory Carpenter & Timothy Michael Sanders案作出判決,裁定執法機關在未取得搜索令的情況下要求出示或取得手機位置記錄,並不違反憲法增修條文第4條。美國憲法增修條文第4條規定:「人人具有保障人身、住所、文件及財物的安全,不受無理之搜索和拘捕的權利;此項權利,不得侵犯;除非有可成立的理由,加上宣誓或誓願保證,並具體指明必須搜索的地點,必須拘捕的人,或必須扣押的物品,否則一概不得頒發搜索令。」   本案事實係聯邦調查局取得兩名涉及多起搶劫案之嫌疑人的手機位置,而根據手機位置之相關資料顯示,於相關搶案發生之時間前後,該二名嫌疑人均位於事發地半英哩至兩英哩的範圍內,故該二名嫌疑人隨後被控多項罪名。在肯認與個人通訊相關之隱私法益的重要性的同時,聯邦第六巡迴上訴法院認為,「縱使個人通訊之內容落於私領域,但是為了將該些通訊內容自A地至B地所必須之資訊,則非屬私領域之範疇。」聯邦第六巡迴上訴法院拒絕將憲法增修條文第4條的保護延伸至像是個人通訊或IP位址等之後設資料(metadata),其原因在於,蒐集此等資訊或記錄並不會揭露通訊的內容,因此本案之嫌疑人就聯邦調查局所取得之資訊並無隱私權之期待。法院認定,此等行為不同於自智慧型手機取得資訊,因為後者「通常而言儲存了大量有關於特定使用人之資訊。」   2015年11月9日,美國聯邦最高法院拒絕審理Davis v. United States案,該案係爭執搜索令於執法部門要求近用手機位置資料時之必要性。加州州長Jerry Brown於2015年10月亦簽署加州電子通訊法(California Electronic Communications Act, CECA),該法禁止任何州政府的執法機關或其他調查單位,在未出示搜索令的情況下,要求個人或公司提供具敏感性之後設資料。

日本總務省展現電信產業改革決心,提出「電信創生計畫」

  日本總務省於2014年10月31日公布了「電信創生計畫(モバイル創生プラン)宣示其對電信產業改革之決心。鑒於智慧型手機已成為日本國民生活中不可或缺的一環,加上以智慧型手機為行動中心,另結合可攜式裝置、機器間通信(Machine to Machine, M2M)及智慧聯網(Internet of Things, IoT)技術之普及,電信產業將會廣泛地影響社會整體之經濟活動,因此總務省喊出了「更自由、更貼近、更快速、更便利」的政策口號。   首先在自由化的部分,總務省於本月宣布了自明年2015年5月開始,日本將全面解除「SIM卡解鎖限制」,未來電信用戶將可以自由地帶機或攜碼,移轉到通信費率更適合自己的電信業者,並同時展開「SIM卡解鎖指南」(SIMロック解除に関するガイドライン)改正案之意見募集。未來,電信業者有義務為提出需求的消費者進行解鎖,此外,若無任何理由予以回絕,將會受「電氣通信事業法」下授權之業務改善命令之約束。然而,對於消費者而言,若有尚未履行完畢之契約,亦應於繳交違約金後,才得以進行解鎖。   第二,為了使消費者能夠安心、安全地使用智慧型手機,日本政府開始積極推動虛擬行動網路(Mobile Virtual Network Operator, MVNO)之服務。所謂的MVNO係指通訊網路與服務分離之概念,業者本身無須擁有通訊網路,但須申請經營執照,並可向其他傳統電信業者(Mobile Network Operator, MNO)租用系統,經營自有品牌之行動通訊業務。因此日本政府為了盡快推行MVNO之服務,已開始與相關業者做系統整備之促進協議。   第三,為了使電信網路之傳輸更快速,除了持續推行3.5G網路外,自2016年將開始進行4G之商業化。最後在便利化之方面,鑒於未來之電信產業將會涵蓋更多樣化的服務,如自動更新導航地圖、提供居家安全服務等,因此日本政府認為,應透過法規制度之改善,給予電信業者於提供服務時,更友善之環境。除了已在近期開始促進,MVNO業者利用MNO業者之資訊管理資料庫協議外。並預計在下期國會提出之「電氣通信事業法」草案進行以下變更:(1)鬆綁對電信業者之規定,例如從促使業者跨界合作之角度,鬆綁不公平競爭之處理;(2)進一步推動電信業者(包括MNO跟MVNO等)費率之調降。   總務省預測,在整體政策同時推動之下,2016年相較2013年底,將增加約兩倍之MVNO契約(從670萬份倍增到1500萬份);而2016年,相關電信產業之規模將比現行之34.3兆日圓增至45兆日圓。

歐盟RELIEF計畫於今(2016)年11月展開前商業化採購之市場公開徵詢

  有鑑於許多歐盟國家為日漸高漲的健康照護成本所困,歐盟於Horizon 2020政策下陸續推動會員國合作以更有效益的創新採購方式進行健康照護計畫的推展,以降低健康照護預算的壓力,RELIEF計畫即屬其一。歐盟於2016年2月啟動RELIEF計畫,聯合義大利、西班牙、瑞典三國,目的在發展創新ICT解決方案以協助慢性病患透過自我管理方式舒緩慢性疼痛、能夠持續獨立生活。欲採購的ICT創新服務為目前尚不存在於市場上、仍需經研發之解決方案,實為針對慢性疼痛自我管理解決方案的「研發服務」,該計畫係採「前商業化採購(Pre-Commercial Procurement, PCP)」方式進行跨國公告招標。目前RELIEF計畫正在進行PCP準備階段之公開市場徵詢,除了透過2個月(今年11、12月)的公開線上問卷調查業者意見,另將以workshop形式舉辦三場公開市場徵詢會議。   RELIEF計畫另一重要目標就是透過此計畫以建立完整PCP流程,讓未來參與相關計畫的公部門能夠熟悉並妥善運用PCP流程及工具 。「前商業化採購」為歐盟廣泛創新戰略中所指出能協助公部門採購「研發服務」的特殊採購程序,以滿足尚未存在市場上、仍需經研發的技術性創新需求,此程序不包含對研發成果的商業化採購,亦不受政府採購法之規範,能夠從需求面刺激廠商創新研發,讓研發從一開始即以機關需求為核心。   RELIEF計畫劃分為PCP之準備階段以及執行階段。於準備階段會進行PCP招標文件準備、採購團隊的需求及現有技術分析、公開市場徵詢(Open Market Consultation, OMC);由於採購機關對其需求尚無具體的規格描述,必須經廣泛的市場意見徵詢與溝通以進一步定義,正在進行中的OMC將聚集採購團隊、潛在投標者(例如對健康照護、數位照護、病患賦權與互動性有鑽研之ICT業者)、終端使用者等,以廣蒐相關利害關係團體意見並進行充分互動溝通,作為執行階段的重要參考基礎。   PCP正式公告後的執行階段即區分為階段A「解決方案設計(Solution design)」(計半年)、階段B「原型開發(Prototype development)」(計半年)、階段C「商業化前開發:場域測試(Pre-commercial development: field test)」(計一年)。各階段將設定參與廠商應達成目標,以篩選出較符合需求者始得進入下一階段,以維持廠商間良性競爭,於階段C最後決標予研發成果最符合計畫需求之廠商(可能1家以上)。   歐盟目前的創新推動策略上PCP屬尚未被充分運用的工具,從該計畫的規劃可見準備階段對後續PCP執行階段的重要性,透過其示範可供政策規劃者為借鏡,運用創新採購驅動產業創新發展以更有效益解決社會與政府需求。

合成資料(synthetic data)

  「合成資料」(synthetic data)的出現,是為了保護原始資料所可能帶有的隱私資料或機敏資料,或是因法規或現實之限制而無法取得或利用研究所需資料的情況下,透過統計學方法、深度學習、或自然語言處理等方式,讓電腦以「模擬」方式生成研究所需之「合成資料」並進行後續研究跟利用,透過這個方法,資料科學家可以在無侵犯隱私的疑慮下,使合成資料所訓練出來的分類模型(classifiers)不會比原始資料所訓練出來的分類模型差。   在合成資料的生成技術當中,最熱門的研究為運用「生成對抗網路」(Generative Adversarial Network, GAN)形成合成資料(亦有其他生成合成資料之方法),生成對抗網路透過兩組類神經網路「生成網路」(generator)與辨識網路(discriminator)對於不同真偽目標值之反覆交錯訓練之結果,使其中一組類神經網路可生成與原始資料極度近似但又不完全一樣之資料,也就是具高度複雜性與擬真性而可供研究運用之「合成資料」。   英國國防科技實驗室(Defense Science and Technology Laboratory, DSTL)於2020年8月12日發布「合成資料」技術報告,此技術報告為DSTL委託英國航太系統公司(BAE Systems)的應用智慧實驗室(Applied Intelligence Labs, AI Labs)執行「後勤科技調查」(Logistics Technology Investigations, LTI)計畫下「資料科學與分析」主題的工作項目之一,探討在隱私考量下(privacy-preserving)「合成資料」當今技術發展情形,並提供評估技術之標準與方法。   技術報告中指出,資料的種類多元且面向廣泛,包含數字、分類資訊、文字與地理空間資訊等,針對不同資料種類所適用之生成技術均有所不同,也因此對於以監督式學習、非監督式學習或是統計學方法生成之「合成資料」需要採取不同的質化或量化方式進行技術評估;報告指出,目前尚未有一種可通用不同種類資料的合成資料生成技術或技術評估方法,建議應配合研究資料種類選取合適的生成技術與評估方法。

TOP