美國白宮科技政策辦公室(Science and Technology Policy, OSTP)在2020年1月6日公布了「人工智慧應用監管指南(Guidance for Regulation of Artificial Intelligence Applications)」,提出人工智慧(AI)監管的十項原則,此份指南以聯邦機構備忘錄(Memorandum for the Heads of Executive Departments and Agencies)的形式呈現,要求政府機關未來在起草AI監管相關法案時,必須遵守這些原則。此舉是根據美國總統川普在去(2019)年所簽署的行政命令「美國AI倡議」(American AI Initiative)所啟動的AI國家戰略之一,旨在防止過度監管,以免扼殺AI創新發展,並且提倡「可信賴AI」。
這十項原則分別為:公眾對AI的信任;公眾參與;科學誠信與資訊品質;風險評估與管理;效益與成本分析;靈活性;公平與非歧視;揭露與透明;安全保障;跨部門協調。旨在實現三個目標:
一、增加公眾參與:政府機關在AI規範制定過程中,應提供公眾參與之機會。
二、限制監管範圍:任何AI監管法規實施前,應進行成本效益分析,且機關間應溝通合作,建立靈活的監管框架,避免重複規範導致限制監管範圍擴大。
三、推廣可信賴的AI:應考慮公平性、非歧視性、透明性、安全性之要求,促進可信賴的AI。
這份指南在發佈後有60天公開評論期,之後將正式公布實施。白宮表示,這是全球第一份AI監管指南,以確保自由、人權、民主等價值。
日本國會在2020年5月27日通過《國家戰略特別區域法》修正案(国家戦略特別区域法の一部を改正する法律),亦即「超級城市法」(スーパーシティ法)。所謂超級城市,係指符合(1)在交通、物流、支付、行政、醫療、照護、教育、能源/水、環境/垃圾、防災/安全等10大領域中,至少滿足其中5個領域日常生活需求;(2)加速實現未來社會生活;(3)透過民眾參與,建立從民眾觀點出發之理想社會等三大條件之未來都市。 超級城市法修正重點有二,首先為實現超級城市構想之相關制度整備,包括(1)賦予蒐集、整理、提供各種類型服務相關資料之資料聯合平台(データ連携基盤)業者法律上地位;(2)因相關制度涉及不同法規及主管機關,故超級城市法內特別設計可併同檢討跨領域法規修正之特別程序;(3)其他規定︰如明定各中央政府機關應提供具體協助、應檢討制定Open API規範,以及本法施行後3年應檢討施行狀況等。其次,本次修法新增地區限定型之監理沙盒制度(地域限定型規制のサンドボックス制度),針對自駕車、無人機等科技創新實驗,透過強化事後監督體制,事前放寬道路運輸車輛法、道路交通法、航空法、電信法之限制,以加速實驗進行。
經濟部預告試辦自願性綠色電價計畫(草案) 日本閣議公布建築節能法修正案2019年2月15日閣議公布《建築物能源使用效率提升法》(建築物のエネルギー消費性能の向上に関する法律,以下稱「建築節能法」)的修正案,將根據住宅及建築物的規模、用途等特性,採取高效性綜合對策,以達到2030年節能目標。 本次《建築節能法》主要修正內容,包含: 非住宅之建築物(如商辦大樓):原針對新建、改建、擴建大規模(樓地板面積2000m2以上)建築物應符合「建築物能源使用效率基準」(建築物エネルギー消費性能基準)之強制規定,將擴及中規模(樓地板面積300m2~2000m2)建築物。另外,新增若複數建築物共同執行的「提升建築物能源使用效率計畫」,經當地相關主管機關認定後,可獲得容積獎勵之規定。 改善大型集合住宅審查制度:針對建築物起造人及承造人須向當地相關主管機關提交「確保建築物能源使用效率的構造與設備計畫」的審查制度,將簡化審查程序,以減少行政機關負擔及提高行政效率。 建築師及住宅業者之義務: (1) 新增設計小規模(樓地板面積不到300m2)建築物的建築師有義務向建築物起造人及承造人,說明該物件的能源使用效率。 (2) 住宅Top Runner制度:原規範大型住宅業者供給之建案獨棟住宅應符合住宅Top Runner基準,現將物件範圍擴及客製化獨棟住宅及小型出租公寓。
德國聯網車輛駕駛策略德國聯邦政府目標擬定於2020年實現高度自動化駕駛,為達成自動駕駛目標,車聯網(Connected driving)及智慧交通系統(Intelligent transport systems)技術成為必要發展工作項目。車聯網即透過無線通訊技術,使車輛間(Vehicle-to-Vehicle, V2V)或車輛對基礎設施 (Vehicle-to-Infrastructure, V2I)等彼此交換訊息,或是將行車資訊傳輸到伺服器,並透過資訊網路平臺將資料整合利用,並依不同功能需求進行有效監控管理和提供綜合服務。未來,可預見道路使用者的個別交通資訊的質與量將大幅提升,無論是部份自動駕駛或高度自動駕駛,將產生龐大資料量,故系統需要即時迅速的運算能力。例如,前方一旦發生車禍事故,必須通知後方自動模式駕駛車輛即時減緩速度,並適時轉由駕駛人員介入操控。 自動化及車聯網駕駛發展係為跨領域之問題,聯邦政府即針對五大領域問題:基礎設施、法規、創新研發、聯網化、資訊安全及資料保護,提出一連串作法及措施,確保德國汽車產業能保持領先地位。 我國資通訊及汽車零件產業具備技術相對優勢,然應就適合我國車聯網之實際需求發展,促進相關產業創新應用,並利用我國產業優勢與國際接軌,讓台灣在車聯網的發展中取得先機。