歐盟執委會於2020年2月19日發表《人工智慧白皮書》(White Paper On Artificial Intelligence-A European approach to excellence and trust)指出未來將以「監管」與「投資」兩者並重,促進人工智慧之應用並同時解決該項技術帶來之風險。
在投資方面,白皮書提及歐洲需要大幅提高人工智慧研究和創新領域之投資,目標是未來10年中,每年在歐盟吸引超過200億歐元關於人工智慧技術研發和應用資金;並透過頂尖大學和高等教育機構吸引最優秀的教授和科學家,並在人工智慧領域提供世界領先的教育課程。
而在監管方面,白皮書提到將以2019年4月發布之《可信賴之人工智慧倫理準則》所提出之七項關鍵要求為基礎,未來將制定明確之歐洲監管框架。在監管框架下,應包括下列幾個重點:1.有效實施與執行現有歐盟和國家法規,例如現行法規有關責任歸屬之規範可能需要進一步釐清;2.釐清現行歐盟法規之限制,例如現行歐盟產品安全法規原則上不適用於「服務」或是是否涵蓋獨立運作之軟體(stand-alone software)有待釐清;3.應可更改人工智慧系統之功能,人工智慧技術需要頻繁更新軟體,針對此類風險,應制定可針對此類產品在生命週期內修改功能之規範;4.有效分配不同利害關係者間之責任,目前產品責任偏向生產者負責,而未來可能須由非生產者共同分配責任;5.掌握人工智慧帶來的新興風險,並因應風險所帶來之變化。同時,白皮書也提出高風險人工智慧應用程式的判斷標準與監管重點,認為未來應根據風險來進行不同程度之監管。執委會並透過網站向公眾徵求針對《人工智慧白皮書》所提出建議之諮詢意見,截止日期為2020年5月19日。
製藥產業的競爭情勢越來越劇烈,藥商間為了求取最大的利益,在以研發新藥為主的原開發藥廠及以複製專利到期的藥品為核心的學名藥廠之間,衍生出新的競合模式,特別是針對專利侵權訴訟予以和解。過去幾年,美國FTC與FDC花了相當多的時間調查製藥界此一實務是否會扭曲市場競爭,因而違反競爭法的精神,美國國會更在2003年底通過法律,對此類競爭予以規範。繼美國之後,歐盟也在2008年1月中,就有關原開發藥廠與學名藥間的競合作關係,向境內的製藥產業發出產業調查,這是歐盟首次就製藥產業內的專利訴訟和解協議展開調查。 歐盟此次調查最主要的目的是為了深入瞭解製藥產業的商業實務,調查內容包括:(1)在專利的策略方面,藥廠對於專利的取得與執行法律保護,是為了要保護創新發明,還是為了阻擋或限制創新藥以及(或)學名藥競爭的目的;(2)藥商之間訴訟纏訟的情形如何;(3)關於專利訴訟和解協議的簽署情形。雖然歐盟此項調查並不一定意味其即可找出原開發藥廠與學名藥廠違反競爭的證據,但歐盟此次的調查舉動或許意味,歐盟已從美國經驗中開始懷疑製藥產業內原開發藥廠與學名藥廠間不尋常的合作模式,對於是否有違反競爭之情事存疑。
加州立法機關提出社群媒體青少年成癮法草案,促進兒童身心福祉社群媒體是溝通資訊之重要工具。但部分社群媒體向用戶投放易使人成癮的資訊,對兒童和青少年福祉形成重大風險。據此緣由,美國加州立法機關於2024年1月29日提出社群媒體青少年成癮法草案(Social Media Youth Addiction Law),規定社群媒體除非能合理確定用戶非未成年人,或取得未成年用戶家長同意,否則不得向用戶提供易使人成癮的資訊。 該草案將網路或應用程式中,依用戶特徵或習慣,優先顯示的多片段資訊,定義為易使人成癮的資訊(addictive feed)。除非該資訊符合以下例外條件: (1) 用戶用以搜尋資訊的關鍵字不會被使用的設備記憶,且該資訊與用戶過去的社群媒體使用行為無關。 (2) 是因用戶隱私設定、設備規格、未成年人限制而呈現的資訊。 (3) 是因用戶明確要求而提供,且不易使人成癮的資訊。 (4) 是用戶間直接且非公開之通訊組成的資訊。 (5) 是同一資訊來源,且在音檔或影片形式下,不會自動連續播放的資訊。 該草案亦規定投放易使人成癮資訊的社群媒體,不得在深夜至凌晨時段、上學至放學時段,以及開學期間的週一到週五,向未成年用戶發送通知,除非已取得未成年用戶家長同意。 最後,該草案規定投放易使人成癮資訊的社群媒體每年向公眾揭露未成年用戶總數量、家長同意接收易成癮資訊的未成年用戶數量等資訊。該規定有利大眾監督社群媒體對法規之遵循情況,並促進社會對兒童、青少年身心健康的關心。
歐洲專利局發布人工智慧與機器學習專利審查指南正式生效歐洲專利局(European Patent Office, 下稱EPO)於2018年11月1日發佈新版專利審查指南已正式生效。此次新版的焦點為Part G, Chapter II, 3.3.1關於人工智慧(Artificial Intelligence, AI)與機器學習(Machine Learning, ML)的可專利性審查細則。 在新版審查指南Part G, Chapter II, 3.3中指出數學方法本身為法定不予專利事項,然而人工智慧和機器學習是利用運算模型和演算法來進行分類、聚類、迴歸、降維等發明,例如:神經網路、遺傳演算法、支援向量機(Support Vector Machines, SVM)、K-Means演算法、核迴歸和判別分析,不論它們是否能夠藉由數據加以訓練,此類運算模型和演算法本身,因具有抽象的數學性質而不具專利適格性。 其中,EPO亦針對人工智慧和機器學習相關應用舉例下列特殊情形,說明可否具備發明技術特徵: (一)可能具技術性 在心臟監測儀器運用神經網路辨別異常心跳,此種技術為具有技術貢獻。 基於低階特徵(例如:影像邊緣、像素數值)的數位影像、影片、音頻或語言訊號分類,屬於分類演算法的技術應用。 (二)可能不具技術性 根據文字內容進行分類,本身不具技術目的,而僅是語言學的目的(T 1358/09) 對抽象數據或電信網路數據紀錄進行分類,但未說明所產生分類的技術用途,亦被認定本身不具技術目的,即使該分類演算法的數據價值高(例如:穩健性)(T 1784/06)。 在新版審查指南中亦指出,當分類方法用於技術目的,其產生之訓練集(training set)和訓練分類器(training the classifier)的步驟,則能被視為發明的技術特徵。 近年來,人工智慧技術的應用分佈在我們的生活中,無論是自駕車、新藥開發、語音辨識、醫療診斷等,隨著人工智慧和機器學習技術快速發展,新版的審查指南將為此技術訂定可專利性標準,EPO未來要如何評判人工智慧和機器學習相關技術,將可透過申請案之審查結果持續進行關注。 「本文同步刊登於TIPS網站(https://www.tips.org.tw )」
日本立憲民主黨提出SDGs基本法案,以達成2030永續發展目標日本立憲民主黨於2023年6月13日向眾議院提出「SDGs基本法案」(持続可能な開発の目標の達成に向けた諸施策の総合的かつ一体的な推進に関する法律案),旨在達成2015年聯合國大會通過之「2030永續發展目標(SDGs)」。 去年6月立憲民主黨曾向參議院提出相關法案,但未審議就被廢止,此次係因日本政府針對SDGs雖有列舉相關議題,惟未對每個目標和達成度進行評估,僅是羅列先前政策,故立憲民主黨擔憂日本無法於2030年實現永續發展目標,重新向眾議院提出SDGs基本法案,希冀透過制定基本方針及必要事項,課予政府實施相關政策,法案主要內容摘要如下: 一、 提出基本原則要求政府應提供國民、經營者、民間團體等構成社會之多元主體,都能參與實現永續發展目標之機會,並應平等對待處於弱勢地位者保障其基本人權,使其受到尊重、充分發揮其個性及能力。 二、 另因永續發展目標與國際相互間有密切關聯,政府應確保國際合作,使目標一體化。 三、 除課予國家、地方自治體應提出SDGs基本方針外,亦要求地方公共團體、企業,在開展各項目活動時,應努力且有責任地一同促進實現永續發展目標。 四、 為實現目標,要求政府須採取必要法制、財政、稅制等措施,政策之內容亦應反映多種民意、確保公正性、透明性,且每年都要向國會提出施政成果及評估報告。 五、 設置「永續發展目標推進本部」(持続可能な開発目標達成推進本部),並邀請專家、利害關係人召開「永續發展目標推進會議」(持続可能な開発目標達成推進会議),一同評估基本方針政策及其達成狀況。 六、 由於實現永續發展目標並不因2030年後任務即刻終止,關於2031年以後之政策,政府應考量社會措施、國際動向等,依評估結果再採取必要之措施。 針對SDGs基本法眾議院已於10月20日交由委員會審議中,是否通過該法案仍待後續觀測,但已展現日本推動SDGs之決意。我國雖非聯合國之會員國,惟於2016年亦自願性回應全球永續發展行動與國際接軌,並於2021年成立「行政院國家永續發展委員會」,力求實現永續發展目標;然而僅靠政府機關的努力恐怕力有未逮,可參考日本作法納入國民、民間團體、企業等多元參與者,攜手合作共同實現SDGs。