歐盟《歐洲資料戰略》

  歐盟執委會針對未來10年歐洲AI開發與開放資料運用方向等核心議題,於2020年2月19日公布一系列數位化政策提案,其中之一即為提出歐洲資料戰略(European Data Strategy)。本戰略提出資料開放共享政策與法制調適框架,宣示其目標為建構歐洲的資料單一市場(single market for data),視資料為數位轉型的核心,開放至今尚未被使用的資料。歐盟期待商界、研究者與公共部門等社群的公民、企業和組織,得透過跨域資料的蒐集與分析,改善決策的作成基礎或提升公共服務品質,為醫療或經濟等領域帶來額外利益,同時促進歐盟推動人工智慧發展及應用。

  本戰略揭示了資料單一市場的建構框架,包含資料必須能在歐盟內與跨域流通並使所有人受益、全面遵守如個資保護、消費者保護與競爭法等歐盟相關規範、以及資料取用(access)和使用的規定,應平等實用且明確,並以之建立資料治理機制;同時,為在技術面強化歐洲數位空間之能力,以完善資料共享所需之資料基礎設施,應創建歐洲資料庫(European data pools),預備將來進行巨量資料分析與機器學習。在上述框架下,本戰略同時擬定了數個具體的措施與制度調修方向如下:(1)建構資料跨部門治理與取用之法規調適框架:包括於2020年第4季提出歐洲共同資料空間管理之立法框架,於2021年第1季提出高價值資料集(high-value data-sets),評估於2021年提出資料法(Data Act)以建構企業對政府或企業間的資料共享環境、調適並建立有利於資料取用之智慧財產權與營業秘密保護框架;(2)強化歐洲管理、處理資料之能力與資料互通性:建構資料共享體系結構並建立共享之標準及治理機制、於2022年第4季啟動歐洲雲端服務市場並整合所有雲端服務產品、於2022年第2季編纂歐盟雲端監管規則手冊;(3)強化個人有關資料使用之權利:從協助個人行使其所產出資料相關權利之角度,可能於資料法中優化歐盟一般資料保護規則(General Data Protection Regulation, GDPR)第20條之資料可攜權,如訂定智慧家電或穿戴裝置之資料可讀性格式;(4)建構戰略領域與公共利益領域之歐盟資料空間:針對戰略性經濟領域與攸關公共利益的資料使用需求,開發符合個資保護與資安法令標準之資料空間,主要用於保存製造業、智慧交通、健康、財務、能源、農業、公共管理等領域之資料。

本文為「經濟部產業技術司科技專案成果」

相關連結
相關附件
你可能會想參加
※ 歐盟《歐洲資料戰略》, 資訊工業策進會科技法律研究所, https://stli.iii.org.tw/article-detail.aspx?d=8433&no=67&tp=1 (最後瀏覽日:2026/02/09)
引註此篇文章
你可能還會想看
數位資產正式納入美國懷俄明州州法,並將虛擬貨幣視為金錢

  美國懷俄明州(Wyoming)於2019年1月18日提出S.F. 0125法案,經參眾議院三讀及州長簽署通過後,將在同年7月1日生效,代表數位資產(digital assets)正式納入懷俄明州州法第34編第29章。該法定義數位資產為表彰經濟性、所有權或近用權,並儲存於可供電腦讀取之格式(computer readable format)中,又區分為數位消費資產(digital consumer assets)、數位證券(digital securities)及虛擬貨幣(virtual currency)等三類。   數位消費資產,是指為了消費、個人或家用目的使用或購買的數位資產,包含:(1)除法律另有規定外,開放區塊鏈代幣(open blockchain tokens)視為個人無形資產(intangible personal property),(2)非屬本章數位證券和虛擬貨幣範圍內之數位資產;數位證券則是指符合懷俄明州州法第17編第4章有價證券定義的數位資產,但排除數位消費資產及虛擬貨幣;又,虛擬貨幣是指使用數位資產作為交易媒介(medium of exchange)、記帳單位(unit of account)或具儲存價值(store of value),且尚未被美國政府視為法定貨幣(legal tender)。   本次修法規定數位資產均為個人無形資產,另將數位消費資產視為該州州法下之一般無形資產,數位證券視為該州州法下之有價證券及投資性財產,虛擬貨幣則視為金錢,有論者表示本次修法有助於促進數位資產流通,並鼓勵各州跟進修法。然此舉是否有助於該州推行數位資產產業,尚待持續觀測,始能得知其對業界與政府監管所造成之影響。

歐盟網路與資訊安全局暨網路安全認證規則要求進行「網路安全認證機制」

  歐盟執委會於2019年6月正式通過「歐盟網路與資訊安全局暨網路安全認證規則(EU Regulation on ENISA and Cyber Security Certification)(Regulation (EU) 2019/881)。規則新增歐盟網路與資訊安全局(European Union Agency for Network and Information Security,ENISA)之職責,負責推行「網路安全認證機制(European cybersecurity certification scheme)」。   網路安全認證機制旨在歐盟層面針對特定產品、服務及流程評估其網路安全。運作模式是將產品或服務進行分類,有不同的評估類型(如自行評估或第三方評估)、網路安全規範(如參考標準或技術規範)、預期的保證等級(如低、中、高),並給予相關之認證。為了呈現網路安全風險的程度,證明書上可以使用三個級別:低、中、高(basic,substantial,high)。若資訊安全事件發生時,對產品、服務及流程造成影響時,廠商應依據其產品或服務之級別採行相對應的因應對策。若被認證為高等級的產品,則表示已經通過最高等級的安全性測試。   廠商之產品或服務被認可後會得到一張認證書,使企業進行跨境交易時,能讓使用者更方便理解產品或服務的安全性,供應商間能在歐盟市場內進行良好的競爭,從而產生更好的產品及性價比。藉由該認證機制所產生的認證書,對於市場方將帶來以下之效益: 一、產品或服務的提供商(包括中小型企業和新創企業)和供應商:藉由該機制獲得歐盟證書,可以在成員國中提升競爭力。 二、公民和最終使用者(例如基礎設施的運營商):針對日常所需的產品和服務,能做出更明智的購買決策。例如消費者欲購買智慧家具,就可藉由ENISA的網路安全認證網站諮詢該產品網路安全資訊。 三、個人、商業買家、政府:在購買某產品或服務時,可以藉此機制讓產品或服務的資訊透明化,以做出更好的抉擇。

日本發布《資料品質管理指引》,強調歷程存證與溯源,建構可信任AI透明度

2025年12月,日本人工智慧安全研究所(AI Safety Institute,下稱AISI)與日本獨立行政法人情報處理推進機構(Information-technology Promotion Agency Japan,下稱IPA)共同發布《資料品質管理指引》(Data Quality Management Guidebook)。此指引旨於協助組織落實資料品質管理,以最大化資料與AI的價值。指引指出AI加劇了「垃圾進,垃圾出(Garbage in, Garbage out)」的難題,資料品質將直接影響AI的產出。因此,為確保AI服務的準確性、可靠性與安全性,《資料品質管理指引》將AI所涉及的資料,以資料生命週期分為8個階段,並特別強調透過資料溯源,方能建立透明且可檢核的資料軌跡。 1.資料規劃階段:組織高層應界定資料蒐集與利用之目的,並具體說明組織之AI資料生命週期之各階段管理機制。 2.資料獲取階段:此步驟涉及生成、蒐集及從外部系統或實體取得資料,應優先從可靠的來源獲取AI模型的訓練資料,並明確記錄後設資料(Metadata)。後設資料指紀錄原始資料及資料歷程之相關資訊,包含資料的創建、轉檔(transformation)、傳輸及使用情況。因此,需要記錄資料的創建者、修改者或使用者,以及前述操作情況發生的時間點與操作方式。透過強化來源透明度,確保訓練資料進入AI系統時,即具備可驗證的信任基礎。 3.資料準備階段:重點在於AI標註(Labeling)品質管理,標註若不一致,將影響AI模型的準確性。此階段需執行資料清理,即刪除重複的資料、修正錯誤的資料內容,並持續補充後設資料。此外,可添加浮水印(Watermarking)以確保資料真實性與保護智慧財產權。 4.資料處理階段(Data Processing):建立即時監控及異常通報機制,以解決先前階段未發現的資料不一致、錯漏等資料品質問題。 5.AI系統建置與運作階段:導入RAG(檢索增強生成)技術,檢索更多具參考性的資料來源,以提升AI系統之可靠性,並應從AI的訓練資料中排除可能涉及個人資料或機密資訊外洩的內容。 6. AI產出之評估階段(Evaluation of Output):為確保產出內容準確,建議使用政府公開資料等具權威性資料來源(Authoritative Source of Truth, ASOT)作為評估資料集,搭配時間戳記用以查核參考資料的時效性(Currentness),避免AI採用過時的資料。 7.AI產出結果之交付階段(Deliver the Result):向使用者提供機器可讀的格式與後設資料,以便使用者透過後設資料檢查AI產出結果之來源依據,增進透明度與使用者信任。 8.停止使用階段(Decommissioning):當資料過時,應明確標示停止使用,若採取刪除,應留存刪除紀錄,確保留存完整的資料生命週期紀錄。 日本《資料品質管理指引》強調,完整的資料生命週期管理、強化溯源為AI安全與創新的基礎,有助組織確認內容準確性、決策歷程透明,方能最大化AI所帶來的價值。而我國企業可參考資策會科法所創意智財中心發布之《重要數位資料治理暨管理制度規範(EDGS)》,同樣強調從源頭開始保護資料,歷程存證與溯源為關鍵,有助於組織把控資料品質、放大AI價值。 本文為資策會科法所創智中心完成之著作,非經同意或授權,不得為轉載、公開播送、公開傳輸、改作或重製等利用行為。 本文同步刊登於TIPS網站(https://www.tips.org.tw)

美國商品期貨交易委員會發布《自願碳額度衍生性金融商品上市指引》,闡述交易所上架自願碳額度衍生性金融商品時所應考量之因素

.Pindent{text-indent: 2em;} .Noindent{margin-left: 2em;} .NoPindent{text-indent: 2em; margin-left: 2em;} .No2indent{margin-left: 3em;} .No2Pindent{text-indent: 2em; margin-left: 3em} .No3indent{margin-left: 4em;} .No3Pindent{text-indent: 2em; margin-left: 4em} 美國商品期貨交易委員會(Commodity Futures Trading Commission, CFTC)於2024年10月15日發布《自願碳額度衍生性金融商品上市指引》(Commission Guidance Regarding the Listing of Voluntary Carbon Credit Derivative Contracts),闡述交易所上架自願碳額度衍生性金融商品時所應考量之因素,旨在推動仍處於發展階段的自願碳額度商品之標準化,以強化其透明度與流動性。本指引認為,決定進行上市交易前應先行考量下列因素: 1.透明度(Transparency):契約應公開碳額度方案(crediting program)與所認證減量專案活動之相關資訊。 2.外加性(Additionality):若無碳額度構成誘因,則其所代表之碳減量或移除將無從發生。 3.永久性與應對反轉風險(Permanence and Accounting for the Risk of Reversal):碳額度方案所核發之碳額度若遭撤銷,應具有充足緩衝儲備(buffer reserve)以替換品質相當之碳額度。 4.穩健量化(Robust Quantification):量化方法應穩健、保守且透明,以確保核發碳額度數量準確反映減排或移除量。 5.治理(Governance):碳額度方案應具備公開治理框架以建構獨立性、透明度及問責制度。 6.追蹤與避免重複計算(Tracking and No Double Counting):碳額度方案應追蹤碳額度之核發、轉讓及註銷,並確保已註銷額度不會再被使用而導致減排或移除量重複計算。 7.第三方確證及查證(Third-Party Validation and Verification):契約應明確記載第三方確證及查證程序,以確保碳額度實物交割符合品質要求,並與自願碳市場最新標準一致。

TOP