澳洲政府發布國家區塊鏈路線圖,建立澳洲區塊鏈技術發展策略與目標

  澳洲產業創新科技部(Department of Industry, Innovation and Science)於2020年2月7日發布「國家區塊鏈路線圖:向區塊鏈賦能之未來前進(National Blockchain Roadmap: Progressing towards a blockchain-empowered future)」政策文件。此路線圖為澳洲政府為彰顯其對區塊鏈技術之重視,並認知到區塊鏈與其他科技結合後將可進一步增進工作機會、促進經濟成長、減少商業成本與提升整體生產力,因此提出之區塊鏈發展方向規劃。

  本路線圖文件指出,為實現區塊鏈技術,澳洲政府將於三個關鍵領域建立相關策略:一、建立有效且合理的規範與標準;二、建立可驅動創新之技術與能力;以及三、促進國際投資與合作。

  路線圖文件並針對2020至2025年之區塊鏈發展進行規劃,相關措施包含:

  1. 重新命名國家區塊鏈諮詢委員會為國家區塊鏈路線圖推動委員會,並使其具有監督路線圖推動之職權。
  2. 建立由產業、研究團隊以及政府合作之團隊,以分析未來可能之應用案例。
  3. 對目前使用案例進行經濟分析與研究可能措施選項。
  4. 建立與連結政府端區塊鏈使用者,以促進學習交流與進一步應用。
  5. 進行國際研究以辨識出其他國家中適合學習做為政府服務之實際案例。
  6. 與區塊鏈服務提供商密切合作進行商業創新研究,以提出可供實際案例運用之解決方案。
  7. 確保區塊鏈發展涵蓋於整體國家策略中以促進數位科技能力管理。
  8. 使產業與教育機構合作發展關於區塊鏈資格技能之共同框架與課程內容。
  9. 為澳洲區塊鏈新創公司提出能力發展協助計畫,使其可向全球擴張並與支持合格企業。
  10. 引導外資投資以促進澳洲區塊鏈生態系建立。
  11. 引導既有雙邊協議進行區塊鏈前端計畫之合作與發展。
  12. 增加政府部門合作以確保澳洲企業可與發展中之新興數位貿易基礎設施進行連結等。

  澳洲政府期待透過推動本路線圖與結合先前提出之AI路線圖政策,達成於2030年前成為數位經濟國家之目標。

本文為「經濟部產業技術司科技專案成果」

相關連結
你可能會想參加
※ 澳洲政府發布國家區塊鏈路線圖,建立澳洲區塊鏈技術發展策略與目標, 資訊工業策進會科技法律研究所, https://stli.iii.org.tw/article-detail.aspx?d=8435&no=67&tp=1 (最後瀏覽日:2025/12/04)
引註此篇文章
你可能還會想看
美國2015年「消費者隱私權法案」簡介

18F與加州政府共同打造採購新流程

  美國的數位服務推動小組18F(Digital service delivery,18F),因辦公室位於華盛頓特區F街18號而得名。2014年3月由總務署(General Service Administration,GSA)成立,透過業界與政府合作模式,幫助政府機關改善流程及增進效率,其所輔導的專案計畫將實際轉變政府機關提供數位服務及科技產品之運作模式,以達跨部會、機關之整合,並使對公眾的數位服務更便於使用。   18F為幫助美國各機關建造、購買及分享現代數位服務以提升政府的使用者經驗,提供了五項服務:(一)就已存的數位規格(digital component)打造訂製化產品(custom products);(二)以創新方式購買科技,使各政府能夠獲得更快、更好及產生更好結果的IT服務。詳細服務內容有代寫委外服務建議書(Request For Proposal,RFP)、開發市場利用現代技術購買IT服務、購買開放源代碼(open source code)以提升專案計畫;(三)替政府建造一安全、可擴展的工具與平台,其能更加符合需求並能夠持續為改善以達需求;(四)協助成為數位化組織,不只是增加組織內部數位化能力,更要形成數位習慣並最終促使組織文化改變;(五)透過討論會、設計工作室、指南及文件工作平台,提供及分享18F實際運用的相關現代數位化服務技術,使政府機關能自行複製及使用。   近期知名成果案例發生於加州。在加州,每一年的孩童福利服務案件管理系統超過2萬名社工利用為追蹤管理超過50萬件虐待及忽視兒童案件,若使用過時系統產生風險將無法估計,故加州政府、美國衛生與人群服務部(Department of Health and Human Services,DHHS)即利用了前述相關服務,與18F共同重新設計該系統的採購流程。從2015年11月至2016年10月,合作建立新系統不到1年的時間,導入了契約文件之簡化、模組化(modular)契約之合併、敏捷性開發(agile development)、使用者中心之設計及開放源(open source)之實踐。   首先,代寫委外服務建議書,18F於其中展示如何將專案計畫為模組化,亦即別於過往採購的傳統模式,非尋找單一開發商去建置整個已預設需求的系統,透過分離的方式,找尋不同開發商以更符合實際需求,亦能避免時間金錢的浪費,降低遲約或違約之風險。再者,聚集可能符合資格的供應商,邀請眾供應商建造以開放源代碼(open source code)方式的原型(prototype)。透過此一過程的激盪,18F從中協助評估所提出的原型、技術等,以了解供應商如何提出及是否符合使用者中心的設計。同時也能減少政府與供應商雙方的招標時間及行政成本。最後,為使加州政府機關能自行複製及使用相關現代數位化服務技術,18F示範敏捷軟體開發(agile software development)專案計畫。從中加州政府不僅瞭解如何為風險評估,且思考相關技術部門於專案計畫中的角色定位。   面臨現代化數位服務,在美國,聯邦與州政府都面臨極大挑戰。18F介入發展新模式,更能達實際需求,亦為內化之協助,利於政府自行發展其他數位服務。18F與加州政府合作之案例,或許能為國家發展數位服務運作之借鏡。

英國資訊專員辦公室對連鎖藥局違反GDPR存放敏感個資作成裁罰首例

  英國資訊專員辦公室(Information Commissioner's Office, ICO)於2019年12月20日發布首宗依據歐盟一般資料保護規則(General Data Protection Regulation, GDPR)之裁罰。   本案源於英國藥物及保健產品管理局(Medicines and Healthcare products Regulatory Agency, MHRA)接獲投訴前往倫敦當地一家名為Doorstep Dispensaree Ltd之連鎖藥局進行藥品違規調查,卻意外發現其後院存放大量敏感個資文件,約五十萬個文件檔案皆未做任何資料檔案保護措施,上面更記載名字、地址、出生日期、NHS號碼、醫療資料及處方籤等患者之個人資料,旋即通報英國資訊專員辦公室展開調查。最終英國資訊專員辦公室以該藥局違反歐盟一般資料保護規則(General Data Protection Regulation, GDPR)第5條1項第f款、第24條第1項及第32條,裁罰275,000英鎊。其裁罰理由如下: 一、隱私政策並不符合要求,如未述明蒐集個人資料之類別,未訂定個資保存期限,當事人告知聲明不完備,無當事人權利行使等。 二、無適當安全維護措施 三、涉及敏感性個資,違法情狀嚴重 四、未積極配合調查 五、影響層面甚深,導致該藥局配合之上百家療養院,近千名當事人個資受損害。   此為英國資訊專員辦公室首宗依據歐盟一般資料保護規則確定裁罰之案例且涉及敏感性個資,有其指標性。除此之外,英國航空與萬豪酒店之個資外洩案亦欲依GDPR進行裁罰,實值持續關注後續發展。

世界衛生組織發布人工智慧於健康領域之監管考量因素文件,期能協助各國有效監管健康領域之人工智慧

世界衛生組織(World Health Organization, WHO)於2023年10月19日發布「人工智慧於健康領域之監管考量因素」(Regulatory considerations on artificial intelligence for health)文件,旨在協助各國有效監管健康領域之人工智慧,發揮其潛力同時最大限度地降低風險。本文件以下列六個領域概述健康人工智慧之監管考量因素: (1)文件化與透明度(Documentation and transparency) 開發者應預先規範(pre-specifying)以及明確記錄人工智慧系統(以下簡稱AI系統)之預期醫療目的與開發過程,如AI系統所欲解決之問題,以及資料集之選擇與利用、參考標準、參數、指標、於各開發階段與原始計畫之偏離及更新等事項,並建議以基於風險之方法(Risk-based approach),根據重要性之比例決定文件化之程度、以及AI系統之開發與確效紀錄之保持。 (2)風險管理與AI系統開發生命週期方法(Risk management and AI systems development lifecycle approaches) 開發者應在AI系統生命之所有階段,考慮整體產品生命週期方法(total product lifecycle approach),包括上市前開發管理、上市後監督與變更管理。此外,須考慮採用風險管理方法(risk management approach)來解決與AI系統相關之風險,如網路安全威脅與漏洞(vulnerabilities)、擬合不足(underfitting)、演算法偏差等。 (3)預期用途、分析及臨床確效(Intended use, and analytical and clinical validation) 開發者應考慮提供AI系統預期用途之透明化紀錄,將用於建構AI系統之訓練資料集組成(training dataset composition)之詳細資訊(包括大小、設定與族群、輸入與輸出資料及人口組成等)提供給使用者。此外,可考慮透過一獨立資料集(independent dataset)之外部分析確效(external analytical validation),展示訓練與測試資料以外之效能,並考慮將風險作為臨床確效之分級要求。最後,於AI系統之上市後監督與市場監督階段,可考慮進行一段期間密集之部署後監督(post-deployment monitoring)。 (4)資料品質(Data quality) 開發者應確認可用資料(available data)之品質,是否已足以支援AI系統之開發,且開發者應對AI系統進行嚴格之預發布評估(pre-release evaluations),以確保其不會放大訓練資料、演算法或系統設計其他元素中之偏差與錯誤等問題,且利害關係人還應考慮減輕與健康照護資料有關之品質問題與風險,並繼續努力創建資料生態系統,以促進優質資料來源之共享。 (5)隱私與資料保護(Privacy and data protection) 開發者於AI系統之設計與部署過程中,應考慮隱私與資料保護問題,並留意不同法規之適用範圍及差異,且於開發過程之早期,開發者即應充分瞭解適用之資料保護法規與隱私法規,並應確保開發過程符合或超過相關法規要求。 (6)參與及協作(Engagement and collaboration) 開發者於制定人工智慧創新與部署路線圖之期間,需考慮開發可近用且具有充足資訊之平台,以於適合與適當情況下促進利害關係人間之參與及協作;為加速人工智慧領域實務作法之進化,透過參與及協作來簡化人工智慧監管之監督流程即有必要。

TOP