美國聯邦交通部公布自駕車4.0政策文件

  美國交通部(Department of Transportation)於2020年1月8日公布「確保美國於自動駕駛技術之領導地位:自駕車4.0」(Ensuring American Leadership in Automated Vehicle Technologies : Automated Vehicles 4.0)政策文件,提出三個核心原則及相對應的策略規劃:

一、 使用者與社會的保護:

  1. 整合自動駕駛技術之安全性,包括防堵對自駕車性能之詐欺或誤導行為,以強化民眾對此新興技術的信心。
  2. 與自駕車技術開發商、製造商及服務商合作,預防與降低惡意使用自動駕駛技術所造成的公共安全威脅及犯罪,如制定網路安全標準、於運輸系統之資料傳輸媒介及資料庫設計能夠防止、反應、偵測潛在或已知危險之可行作法。
  3. 要求製造商於設計和結合相關自動駕駛技術時,採取具整體風險考量之方式,以確保資料安全性與公眾隱私保護,特別是針對駕駛者與乘客,以及第三人資料存取、分享及使用。
  4. 支援與協助自動駕駛技術研發,並透過提供多樣化商品和服務,滿足消費者需求並增加自駕車的普及性,使國人能使用安全且能負擔的移動載具。

二、 保障市場效率:

  1. 採取靈活及技術中立政策,由大眾選擇具經濟及有效率的運輸方案。
  2. 透過相關智慧財產法規,保護相關技術,並持續推動經濟增長之政策及提升國內技術創新競爭力。
  3. 收集與研擬國內外法規資料,並使自動駕駛技術產品及服務能夠與國際標準接軌。

三、 促進與協調各方合作:

  1. 積極協調全國自動駕駛技術研究、法規和政策,以利有效運用各機構資源。
  2. 參考國際間自動駕駛技術標準及監理法規,並與各州政府及業界共同研擬與整合自動駕駛技術至現行運輸系統標準與相關法規。

本文為「經濟部產業技術司科技專案成果」

相關連結
※ 美國聯邦交通部公布自駕車4.0政策文件, 資訊工業策進會科技法律研究所, https://stli.iii.org.tw/article-detail.aspx?d=8448&no=67&tp=1 (最後瀏覽日:2026/02/05)
引註此篇文章
你可能還會想看
何謂「美國創新戰略」?

  美國創新戰略(Strategy for American Innovation)係美國經濟委員會(National Economic Council,NEC)及白宮科技政策辦公室(Office of Science and Technology Policy,OSTP)於2009年9月所提出的重要科研指導政策,為美國近年調整科研發展之依據,曾分別於2011年2月及2015年10月配合時事增補最新內容。該政策主要在說明美國政府、國民與企業應如何共同努力進行全面性的創新,強化長期的經濟成長;在此基礎上發展對於美國產業發展具有優先重要性的技術領域。最初提出時內容包括:1.美國創新基石之投資;2.促進以市場為導向的創新;3.以及針對國家需求的優先順位催化重要的科技突破。   白宮在2011年4月進一步提出一些重要的創新促進新機制,包括改革專利制度、重視數位教育以及基礎科學教育的強化、加速發展再生能源、提振美國創業精神(entrepreneurship)等。隨著政策的逐步推行,2015年10月公布之最新版本,內容包括:1.投資創新基石;2.刺激私部門進行創新活動,並研議租稅優惠永久制度化;3.營造一個創新者國家,改善創業環境,協助更多創新者成功創業。並且在政府機關間強調創新,另著重於從私部門的根本改變其活動和行為模式,提升創新層次才能確實將創新成果在產業間創造出來。

美國醫療保險將為醫院提供鐮狀細胞疾病基因療法的創新支付鼓勵措施

美國醫療保險和醫療補助服務中心(Centers for Medicare and Medicaid Services, CMS)於2024年4月10日發布了2025財年(Fiscal year 2025, Oct. 1, 2024, to Sept. 30, 2025)醫療保險醫院住院預期支付系統(Inpatient Prospective Payment System, IPPS)規則草案(proposed rule)。 考量到細胞療法費用高、可近用性低,2025財年規則草案便包含為醫院提供治療鐮狀細胞疾病(Sickle Cell Disease, SCD)基因療法,其新技術附加支付(New Technology Add-on Payment, NTAP)附加百分比從原本的65%提高到75%的創新支付措施。 NTAP方案是2001年由CMS推出,旨在激勵醫院採用新技術和新療法。NTAP規定新的醫療服務或技術必須滿足以下3個標準,才有資格獲得附加支付: 1.新穎性:醫療服務或技術必須是新的。一旦此治療已經被認為不是新技術,附加支付就會結束。 2.費用過高:醫院在使用新技術時,可能會產生成本超出標準的住院病患支付限額,該技術在現有醫療保險嚴重程度診斷相關群組(Medicare Severity Diagnosis-Related Groups, MS-DRG)系統下不足以支付。 3.實質的臨床改善:與目前可用的治療方法相比,使用該技術其臨床資料必須要顯示確實能改善特定病人群體的臨床結果。 NTAP透過提供經濟激勵,支持醫療機構在初期階段採用新技術,從而促進醫療創新並改善患者治療效果。SCD為一種遺傳性疾病,對美國黑人影響嚴重,且治療選擇有限。因此該創新支付鼓勵措施將使醫院可以獲得更多的資金來執行昂貴的SCD基因療法,進一步促進SCD病人獲得最新的治療,且能減少SCD長期醫療照護的相關成本。 本文同步刊載於stli生醫未來式網站(https://www.biotechlaw.org.tw)

點對點分享軟體導致資料外洩

  位於美國紐約州的一家知名藥廠2007年9月初宣佈其已確認大約有34000名員工的個人資料從某位員工的電腦外洩並遭人非法下載。   整起事件係導因於一位藥廠的員工自行於公司配發的筆記型電腦上安裝未經授權的檔案分享軟體,導致大約有34000名員工的個人資料在網路上被人下載流傳。至於因這起事件遭到外洩的個人機密資料包括員工姓名、社會福利號碼、出生日期、電話號碼和銀行信用狀況等等。   美國司法部門目前已針對這起資料外洩事件展開調查,並要求這家藥廠針對他們用來防止資料外洩的處理方式以及事件發生時的所有相關應變措施提出報告。根據調查,事實上早在今年7月10日這家藥廠即已發現這起大量個人資料外洩事件,卻遲至8月24日才以電子郵件通知資料外洩的被害人,反應時間長達六個星期之久,導致損害持續擴大。   由這起藥廠員工個人資料外洩事件正可顯示點對點(P2P)網路分享軟體確實潛藏著嚴重的資訊安全風險。透過此類軟體,網路駭客得以完整地掃描他人電腦硬碟中的檔案,讓不知情使用者的機密資料隨時處於高度的風險當中。   點對點檔案分享軟體(P2P),當初開發的目的在於集合眾人電腦之力,增加網路的連結數量,進而快速傳輸檔案。但以此作為入侵他人電腦的工具,甚至未經允許盜取他人的電腦中檔案資料等之新電腦犯罪型態,值得相關主管機關注意。

南韓個資保護委員會發布人工智慧(AI)開發與服務處理公開個人資料指引

南韓個資保護委員會(Personal Information Protection Commission, PIPC)於2024年7月18日發布《人工智慧(AI)開發與服務處理公開個人資料指引》(인공지능(AI) 개발·서비스를 위한 공개된 개인정보 처리 안내서)(以下簡稱指引)。該指引針對AI開發與服務處理的公開個人資料(下稱個資)制定了新的處理標準,以確保這些資料在法律上合規,且在使用過程中有效保護用戶隱私。 在AI開發及服務的過程中,會使用大量從網路上收集的公開資料,這些公開資料可能包含地址、唯一識別資訊(unique identifiable information, UII)、信用卡號等個資。這些公開的個資是指任意人可藉由網路抓取技術自公開來源合法存取的個資,內容不限於個資主體自行公開的資料,還包括法律規定公開的個資、出版物和廣播媒體中包含的個資等。由於公開資料眾多,在現實中很難在處理這些公開個資以進行AI訓練之前,取得每個個資主體的單獨同意及授權,同時,南韓對於處理這些公開個資的現行法律基礎並不明確。 為解決上述問題,PIPC制定了該指引,確認了蒐集及利用公開個資的法律基礎,並為AI開發者和服務提供者提供適用的安全措施,進而最小化隱私問題及消除法律不確定性。此外,在指引的制定過程中,PIPC更參考歐盟、美國和其他主要國家的做法,期以建立在全球趨勢下可國際互通的標準。 指引的核心內容主要可分為三大部分,第一部分:應用正當利益概念;第二部分:建議的安全措施及保障個資主體權利的方法;及第三部分:促進開發AI產品或服務的企業,在開發及使用AI技術時,注意可信任性。 針對第一部分,指引中指出,只有在符合個人資料保護法(Personal Information Protection Act, PIPA)的目的(第1條)、原則(第3條)及個資主體權利(第4條)規定範圍內,並滿足正當利益條款(第15條)的合法基礎下,才允許蒐集和使用公開個資,並且需滿足以下三個要求:1.目的正當性:確保資料處理者有正當的理由處理個資,例如開發AI模型以支持醫療診斷或進行信用評級等。2.資料處理的必要性:確保所蒐集和利用的公開資料是必要且適當的。3.相關利益評估:確保資料處理者的正當利益明顯超越個資主體的權利,並採取措施保障個資主體的權利不被侵犯。 而第二部分則可區分為技術防護措施、管理和組織防護措施及尊重個資主體權利規定,其中,技術防護措施包括:檢查訓練資料來源、預防個資洩露(例如刪除或去識別化)、安全存儲及管理個資等;管理和組織防護措施包括:制定蒐集和使用訓練資料的標準,進行隱私衝擊影響評估(PIA),運營AI隱私紅隊等;尊重個資主體權利規定包括:將公開資料蒐集情形及主要來源納入隱私政策,保障個資主體的權利。 最後,在第三部分中,指引建議AI企業組建專門的AI隱私團隊,並培養隱私長(Chief Privacy Officers, CPOs)來評估指引中的要求。此外,指引亦呼籲企業定期監控技術重大變化及資料外洩風險,並制定及實施補救措施。 該指引後續將根據PIPA法規修訂、AI技術發展及國際規範動向持續更新,並透過事前適當性審查制、監管沙盒等途徑與AI企業持續溝通,並密切關注技術進步及市場情況,進而推動PIPA的現代化。

TOP