歐洲央行(European Central Bank, ECB)於2020年3月18日提出7500億歐元之「緊急債券收購計畫」(Pandemic Emergency Purchase Programme),紓困金額占歐盟年GDP之7.3%,以協助歐盟面臨新型冠狀病毒(covoid-19)所帶來之經濟衝擊,同時也減緩再生能源產業因疫情所帶來之影響。
就此,歐洲央行總裁Christine Lagarde表示,對於紓困對象及方法,歐洲央行將採取不分產業類別自市場購買公債或私人債券之方式,以因應疫情所帶來之影響,其中也包含歐盟投資銀行(European Investment Bank, EIB)所發行之「綠色債券」(Green Bond)。又綠色債券係歐盟投資銀行於2007年所發行,又名「氣候意識債券」(Climate Awareness Bond),職是故,歐洲央行針對歐盟投資銀行綠色債券進行紓困將使再生能源產業蒙受其利。
依歐洲央行之「緊急債券收購計畫」,歐洲央行僅得自次級市場(Secondary Market)購買債券,而不得直接自初級市場(Primary Market)購買,亦即歐洲央行僅得自價證券買賣之交易市場購買債券,而不得直接購買首次出售之有價證券,此項限制,也包含歐盟投資銀行所發行之綠色債券。
以歐盟投資銀行綠色債券為例,歐洲央行之操作機制在於透過此項購買手段,提升歐盟投資銀行綠色債券之市場價格,同時讓歐盟投資銀行面對投資人時,可以享有較為優渥之議價空間,以降低歐盟投資銀行未來所要付給投資人之利率。同時歐洲央行可再進一步降低對於歐盟投資銀行之利息,進一步降低歐盟投資銀行因發行綠色債券所帶來之利息壓力,促使綠色產業得以因應疫情之衝擊。
如此歐洲央行即達成其目的,減緩投資市場之震盪,同時達到振興經濟產業效益。這也是為何,歐洲央行僅得自次級市場(Secondary Market)購買債券,而不得直接自初級市場(Primary Market)購買債券之原因。
本文為「經濟部產業技術司科技專案成果」
為促進各國政府和國際組織間之研究資料、新聞報導、資料集(data set)等公共著作於網路自由流通、運用,世界智慧財產組織(World Intellectual Property Organization, WIPO)和經濟合作暨發展組織(Organization of Economic Co-operation and Development, OECD)等多個國際組織經過2年多的合作研究,終於2013年底開發出「創用CC 3.0 政府間組織授權(Creative Commons 3.0 Intergovernmental Organization (IGO) Li-cense,下稱IGO授權)」機制。聯合國教科文組織(United Nations Educational, Scientific and Cultural Organization,下稱UNESCO)亦將其建置之「開放近用著作資料庫(Open Access Repository,下稱OAR)」網站運用IGO授權。 IGO授權係為使特定內容再發行而設計的簡易公開授權程序。IGO授權同樣分為6種授權條件,即為「姓名標示」、「姓名標示-相同方式分享」、「姓名標示-商業性」、「姓名標示-禁止改作」、「姓名標示-非商業性-相同方式分享」、「姓名標示-非商業性-禁止改作」。 2013年12月UNESCO將IGO授權運用至儲存UNESCO之電子書、新聞報導、研究資料等之OAR。UNESCO之OAR係開放給全世界的人可免費下載內容,甚至進行重製、翻譯、改寫等。UNESCO只使用IGO授權中「姓名標示-相同方式分享」條件,若使用者要依其他授權條件使用著作的話,就須向UNESCO取得書面同意。 UNESCO為聯合國所屬組織中第一個對著作採取公開近用政策(Open Access Policy),透過OAR,UNESCO著作流通規模已有顯著增加。未來相關政府間組織之資料開放利用,若逐步地適用IGO授權機制,可預期的是將會有助於擴大公共資料加值利用市場規模。
西班牙AEPD增加關於健康和個人資料保護關注領域西班牙個資監管機關(Agencia Española de Protección de Datos, AEPD)於2022年5月3日增加健康和個人資料保護有關的關注領域。觀2021年,計有680件與健康資料相關之爭議案件,與2020年相比增長了75%,又因健康資料為特殊類型之個人資料,故更應嚴加保障。 該領域的內容適用於公民、資料控制者、資料保護專業人員、健康中心或製藥行業等,共分六小節: 一、第一小節概述了與健康資料有關的權利,解釋了歐盟一般個人資料保護規則(General Data Protection Regulation, GDPR)第9條及西班牙當地規範有關處理健康資料定義、如何行使醫療記錄近用權(Right to access),以及與醫學研究相關的問題,其中規定了患者在使用資料和臨床文件方面權利和義務、在近用權被拒絕情況下如何向AEPD申訴、臨床病史保留及刪除權利之限制等。 二、第二小節重點介紹AEPD公布的相關報告和指南,包括勞資關係中之個人資料保護指南,及有關臨床病史、臨床試驗等相關主題之報告。 三、第三小節則著重在AEPD於新型冠狀病毒肺炎(COVID-19)爆發後,製作大量與COVID-19相關之聲明文件及法律報告,故在此彙整相關資料,以協助落實個人資料之保障。 四、第四小節健康研究和臨床試驗,其中彙編了相關指南,以及規範臨床試驗和其他臨床研究以及藥物安全監視所涉個人資料保護行為準則。 五、第五小節講述與健康狀況有關之申訴、賠償紀錄部分,其中包括AEPD收到多項涉及已故患者直系親屬近用醫療記錄之權利或醫療專業人員非法獲取臨床病史和醫療記錄之投訴。 六、第六小節側重於醫療組織洩露個人資料議題,概述了資料控制者之義務以及為確保遵循GDPR而應採取之措施,另強調以特殊方式處理健康資料之活動,如電子健康紀錄、物聯網醫療所使用之行動裝置或雲端等存取設備,皆存在外洩之風險因子。
美國最高法院明確放寬專利權耗盡原則之適用範圍美國最高法院於2017年5月30日針對Impression Products v. Lexmark International作出最終裁決,說明當專利權人銷售專利產品時,無論在美國境內或境外,專利權人不能再以美國專利法來限制該專利產品,一經銷售後該產品專利權已經耗盡。 本案起因為美國印表機研發製造大廠Lexmark推出兩項碳粉匣方案:原價碳粉匣,無任何轉售限制;以及優惠碳粉匣,並附帶「一次性使用」(single use)及「不得轉售」(no resale)限制條款,消費者不得自行填充再利用、再轉售或轉讓給原廠以外的第三方。本案專利權人Lexmark控告同業Impression侵害其權利(違反一次性使用及不得轉售),被告Impression則主張兩項碳粉匣產品的專利權在美國境內的首次銷售後就已耗盡了。該案爭點包含:(一)專利產品在境外首次授權或銷售,是否導致專利權耗盡;(二)專利權人訂立售後限制條款,可否用以追究當事人違反限制條款責任? 地院引述最高法院過去兩個判例(Quanta案及Kirtsaeng案),裁定Lexmark專利產品因首次授權銷售情形而權利耗盡。原告Lexmark提出上訴,CAFC則認為專利產品在境外銷售情形,不會導致專利權人在境內專利權耗盡,且在首次銷售時給的授權,已經合法限制再銷售或再使用,故Impression仍構成專利侵權。 最終,最高法院推翻CAFC見解,認為無論是專利權人直接銷售,或是對專利產品加諸任何限制,專利權人決定銷售產品時,該產品相關的專利權就會耗盡。另外最高法院亦指出,當專利權人透過契約與購買者約定,限制其使用或轉售的權利,其在契約法上或許有效,但在專利侵權訴訟中則沒有用。本案後,最高法院確立採國際耗盡原則,說明專利權人在全球任何地方,產品經銷售後即權利耗盡,無論專利權人是否有任何售後限制。 「本文同步刊登於TIPS網站(https://www.tips.org.tw )」
世界衛生組織發布人工智慧於健康領域之監管考量因素文件,期能協助各國有效監管健康領域之人工智慧世界衛生組織(World Health Organization, WHO)於2023年10月19日發布「人工智慧於健康領域之監管考量因素」(Regulatory considerations on artificial intelligence for health)文件,旨在協助各國有效監管健康領域之人工智慧,發揮其潛力同時最大限度地降低風險。本文件以下列六個領域概述健康人工智慧之監管考量因素: (1)文件化與透明度(Documentation and transparency) 開發者應預先規範(pre-specifying)以及明確記錄人工智慧系統(以下簡稱AI系統)之預期醫療目的與開發過程,如AI系統所欲解決之問題,以及資料集之選擇與利用、參考標準、參數、指標、於各開發階段與原始計畫之偏離及更新等事項,並建議以基於風險之方法(Risk-based approach),根據重要性之比例決定文件化之程度、以及AI系統之開發與確效紀錄之保持。 (2)風險管理與AI系統開發生命週期方法(Risk management and AI systems development lifecycle approaches) 開發者應在AI系統生命之所有階段,考慮整體產品生命週期方法(total product lifecycle approach),包括上市前開發管理、上市後監督與變更管理。此外,須考慮採用風險管理方法(risk management approach)來解決與AI系統相關之風險,如網路安全威脅與漏洞(vulnerabilities)、擬合不足(underfitting)、演算法偏差等。 (3)預期用途、分析及臨床確效(Intended use, and analytical and clinical validation) 開發者應考慮提供AI系統預期用途之透明化紀錄,將用於建構AI系統之訓練資料集組成(training dataset composition)之詳細資訊(包括大小、設定與族群、輸入與輸出資料及人口組成等)提供給使用者。此外,可考慮透過一獨立資料集(independent dataset)之外部分析確效(external analytical validation),展示訓練與測試資料以外之效能,並考慮將風險作為臨床確效之分級要求。最後,於AI系統之上市後監督與市場監督階段,可考慮進行一段期間密集之部署後監督(post-deployment monitoring)。 (4)資料品質(Data quality) 開發者應確認可用資料(available data)之品質,是否已足以支援AI系統之開發,且開發者應對AI系統進行嚴格之預發布評估(pre-release evaluations),以確保其不會放大訓練資料、演算法或系統設計其他元素中之偏差與錯誤等問題,且利害關係人還應考慮減輕與健康照護資料有關之品質問題與風險,並繼續努力創建資料生態系統,以促進優質資料來源之共享。 (5)隱私與資料保護(Privacy and data protection) 開發者於AI系統之設計與部署過程中,應考慮隱私與資料保護問題,並留意不同法規之適用範圍及差異,且於開發過程之早期,開發者即應充分瞭解適用之資料保護法規與隱私法規,並應確保開發過程符合或超過相關法規要求。 (6)參與及協作(Engagement and collaboration) 開發者於制定人工智慧創新與部署路線圖之期間,需考慮開發可近用且具有充足資訊之平台,以於適合與適當情況下促進利害關係人間之參與及協作;為加速人工智慧領域實務作法之進化,透過參與及協作來簡化人工智慧監管之監督流程即有必要。