歐洲專利局於2019年12月20日,拒絕受理兩項以人工智慧為發明人的專利申請,並簡扼表示專利上的「發明人」以自然人為必要。另於2020年1月28日發布拒絕受理的完整理由。
系爭兩項專利均由英國薩里大學教授Ryan Abbott(下稱:專利申請人)的團隊申請,並宣稱發明人是「DABUS」。DABUS並非人類,而是一種類神經網路與學習演算法的人工智慧,由Stephen Thaler教授發明並取得專利。專利申請人先於2019年7月24日將自己定義為DABUS的雇主並遞出首次專利申請,再於2019年8月2日改以權利繼受人名義申請(Successor in Title)。專利申請人強調系爭申請是由DABUS發明,且DABUS在人類判定前,即自我判定其想法具新穎性(identified the novelty of its own idea before a natural person did)。專利申請人認為該機器應可以被視為發明人,而機器的所有人則是該機器創造出的智慧財產權之所有人─這樣的主張是符合專利系統的主旨,給予人們揭露資訊、商業化和進行發明的動機。申請人進一步強調:承認機器為發明人可以促進人類發明人的人格權和認證機器的創作。
在經過2019年11月25日的聽證程序(Oral Proceedings)後,歐洲專利局決定依《歐洲專利公約》(European Patent Convention)Article 81, Rule 19 (1)駁回申請。歐洲專利局強調,發明人必須是自然人(Natural Persons)是國際間的標準,且許多法院曾經對此做過相應的判決。再者,專利申請必須強制指定發明人,因為發明人需要承擔許多法律責任與義務,諸如取得專利權後衍生的法律權利。最後,雖然Article 81, Rule 19 (1)規定發明人應該要附上姓名與地址,但單純幫一個機器取名字,並不會使之符合《歐洲專利公約》的發明人要件。歐洲專利局強調,從立法理由即可知道,《歐洲專利公約》的權利主體僅限自然人和法人(Legal Persons)、專利申請的發明人僅限自然人。歐洲專利局表示,目前AI系統或者機器不具有權利,因為他們沒有如同自然人或法人一樣的人格(Legal Personality)。自然人因為生命而擁有人格,而法人的法人格來自於法律擬制(Legal Fiction)。這些法律擬制的人格來自於立法者的授權或者眾多司法判決的演進,而AI發明者是不具有此般的法律擬制人格。
本文為「經濟部產業技術司科技專案成果」
美國平等就業機會委員會(Equal Employment Opportunity Commission, EEOC)於2023年5月18日發布「根據 1964 年《民權法》第七章評估就業篩選程序中使用軟體、演算法和AI之不利影響」(Assessing Adverse Impact in Software, Algorithms, and Artificial Intelligence Used in Employment Selection Procedures Under Title VII of the Civil Rights Act of 1964)之技術輔助文件(下簡稱「技術輔助文件」),以防止雇主使用自動化系統(automated systems)對求職者及員工做出歧視決定。 該技術輔助文件為EEOC於2021年推動「AI與演算法公平倡議」(Artificial Intelligence and Algorithmic Fairness Initiative)計畫的成果之一,旨在確保招募或其他就業決策軟體符合民權法要求,並根據EEOC 1978年公布之「受僱人篩選程序統一指引」(Uniform Guidelines on Employee Selection Procedures, UGESP),說明雇主將自動化系統納入就業決策所應注意事項。 當雇主對求職者與員工做出是否僱用、晉升、終止僱傭,或採取類似行動之決定,是透過演算法決策工具(algorithmic decision-making tool),對特定種族、膚色、宗教、性別、國籍或特定特徵組合(如亞洲女性),做出篩選並產生不利影響時,除非雇主能證明該決策與職位工作內容有關並符合業務需求,且無其他替代方案,否則此決策將違反《民權法》第七章規定。 針對如何評估不利影響,雇主得依UGESP「五分之四法則」(four-fifths rule),初步判斷演算法決策工具是否對某些族群產生顯著較低的篩選率。惟EEOC提醒五分之四法則推導出之篩選率差異較高時,仍有可能導致不利影響,雇主應依個案考量,使用實務常見的「統計顯著性」(statistical significance)等方法進一步判斷。 其次,當演算法決策工具係由外部供應商所開發,或由雇主授權管理人管理時,雇主不得以信賴供應商或管理人陳述為由規避《民權法》第七章,其仍應為供應商開發與管理人管理演算法決策工具所產生之歧視結果負責。 最後,EEOC鼓勵雇主應對演算法決策工具進行持續性自我評估,若發現該工具將產生不利影響,雇主得採取措施以減少不利影響或選擇不同工具,以避免違反《民權法》第七章。
日本農業數據利用的瓶頸與農業數據平台WAGRI的誕生日本從事農業者高齡少子化以致後繼無人,農業ICT(Information and Communication Technology)可使資深農民內隱知識外顯化而利於經驗傳承,例如已有地區透過除草機器人、自動運行農機等ICT農機,蒐集稻米收穫質量之數據進行分析,實作出施肥最適條件的成功案例。 然而成功案例之數據利用,延伸至其他地區實踐時卻顯得窒礙難行。首先是成本面,農場計測溫溼度等數據之感測器的設置、管理維護與通信等成本負擔,宛如藏寶洞前豎立之石門,不得其門而入。另一造門磚是農機或感測器等不同業者之系統服務互不相容,且數據無法互換共用,為求最適合特定地區與農作物之農業ICT組合,且能移植成功案例至其他地區,系統相容數據共用亦是當務之急。 日本農業數據協作平台(簡稱WAGRI),可為大喊芝麻開門之鑰,日本於2017年內閣府計畫支持下,由農業生產法人、農機製造商、ICT供應商、大學與研究機關等組成聯盟,一同建置具備「合作」(打破系統隔閡使數據得以相容互換)、「共有」(數據由提供者選定分享方式)、「提供」(由公私部門提供土壤、氣象等數據)三大功能之WAGRI,今年已有實作案例指出,活用WAGRI後,在數據蒐集與利用上的勞力與時間成本明顯縮減。 台灣農業同樣面臨高齡化、傳承之困境,日本WAGRI整合與共享數據的模式可作為我國發展農業ICT活用數據之參考。
歐洲網路與資訊安全機構和歐洲標準化機構針對網路安全簽訂合作協議歐洲網路與資訊安全機構(European Network and Information Security Agency,簡稱ENISA)為了支持網路安全商品和服務進行標準化,於今年七月九日和歐洲標準化委員會(European Committee for Standardization,簡稱CEN)與歐洲電工技術標準化委員會(European Committee for Electrotechnical Standardization,簡稱CENELEC)共同簽署合作協議,來強化網路安全標準化的各項措施。 本合作協議的目的,在於能夠更有效地了解與解決網路和資訊安全標準化的議題,特別是處理和ENISA有所關連的不同訊息和通信技術(ICT)部門。本次簽署的合作協議,可視為是近來ENISA制定新法規的額外延伸,其將給予ENISA針對支持網路資訊安全(NIS)標準的發展,有更多積極的角色。本合作協議涉及的範圍包含下列情況: ‧ENISA於識別技術委員會(identified technical committees)作為觀察人,CEN與CENELEC的工作小組與講習作為支持歐洲標準的準備 ‧CEN與CENELEC評估ENISA相關的研究成果,並且將其轉化成標準化活動 ‧ENISA參與或適當地擔當依據CEN-CENELEC內部規章所組成的相關技術委員會、工作小組與講習之主席 ‧散布和促進出版物、研究結果、會議或研討會之消息流通 ‧對於促進活動與因NIS標準相關工作之商業聯繫建立和研究網絡提供相互支持 ‧針對處理攸關NIS標準活動的科技和研究議題,舉辦各項局部工作小組、會議和研討會 ‧針對共同利益確定之議題作相關資訊交換 有鑑於ENISA逐漸強調NIS標準化的相關工作,標準化不僅能改善網路安全外,更能提高所有網路安全產品與服務當面對不同網路威脅時的防禦能力。是以,我國資安主管機關是否亦需協調所有資安部門,針對網路安全技術架構研擬或規劃出相關標準化的網路威脅防範模組,則是亟需思考的問題。
我國遊戲軟體著作權爭議探討