科技巨頭Google目前預計依循Apple Card模式,與花旗銀行、Stanford Federal Credit Union合作開發「Google Card」智慧簽帳金融卡。
雖目前尚未正式發行,但根據TechCrunch報導指出,使用者在連結銀行帳戶後,可向Google Card轉入資金或從卡中轉出資金,消費時會直接從個人連結的銀行帳戶扣款。此外,Google Card將連接到具有新功能的Google應用程式,讓使用者得以輕鬆監管消費狀況、確認餘額或鎖定帳戶。
這對於Google來說,為非常重要的一步,因Google本身掌握巨量資料,因此透過Google Card,Google有機會獲得新的收入和消費數據,其將向消費店家酌收交易手續費,再與銀行拆分;此外,Google Card的隱私權政策中,可能利用用戶消費的交易數據,以改善投放商品廣告的衡量標準,若Google可以其金融商品推動銷售,將使更多的品牌願意購買Google廣告。
長期影響來看,Google Card可為Google提供銀行業務,包括股票經紀業務、財務建議或AI會計、保險、借貸諮詢,而因Google掌握大量數據,將可能使Google比傳統金融機構更能準確的管理金融風險,透過應用程式、廣告、搜尋和Android系統,Google和消費者之間建立深厚關聯,為推廣和提供金融服務建立一個充足的背景。隨著武漢肺炎疫情的漸緩,高利潤的金融商品也將幫助 Google 開發有效的收入機會並藉此提升股價。
為了全力打造英國成為「FinTech 全球領導者地位」,及引領FinTech 國際監管規則的大國,英國金融業務監理局(Financial Conduct Authority, FCA)於2014年10月啟動了金融科技創新計畫(Project Innovate),目的就是能夠追蹤進入金融市場的新興商業模式,其中最重要的建立監理沙盒制度(Regulatory Sandbox),旨在提供企業可以在安全空間內對創新產品、服務、商業模式等進行測試,而不會立即招致參與相關活動的所有監管後果。 金融科技創新計畫增設創新中心(Innovation Hub),為創新企業提供與監管對接等各種支持。 金融科技創新計畫通過促進破壞式創新鼓勵挑戰現有的商業模式,而創新中心主要透過政策與金融科技業者交流,了解是否監管政策能夠更好的支持創新。
FDA允許第一個可以直接對消費者進行個人基因遺傳的健康風險服務測試法-GHR「美國食品和藥物管理局(FDA)」於2017年4月6日准許「23and me個人基因遺傳健康風險服務測試(簡稱GHR)」進行行銷,FDA要求該測試方法可以一定準確度檢測出十種疾病及可能條件。GHR是第一個被美國食品藥物管理局授權允許直接對消費者進行測試並提供個人遺傳傾向及醫療疾病條件資訊給消費者的測試。 GHR試圖提供遺傳風險資訊給消費者,但這個測試無法確定人們發展成疾病或發病條件的總體風險,因為除了某些遺傳變體的存在,還有很多因素會影響健康條件的發展,包含環境以及生活方式的因素,因此該檢測可能可以幫助人們做選擇生活方式的決定或告知消費者專業的健康照護。 23and me的GHR測試是運作自隔離唾液樣品中的DNA,此檢測被測試超過500000個遺傳變體,其檢測關於發展成以下十種疾病或發病條件增加風險的存在與否,包括帕金森氏症(Parkinson’s disease)、阿茲海默症(Late-onset Alzheimer’s disease)、自體免疫問題(Celiac disease)、α-1抗胰蛋白酶缺乏症、早發性原發性肌張力障礙(early-onset primary dystomia)、因子XI缺乏症(factor XI deficiency)、高血病1型(gaucher disease type1)、葡萄糖6-磷酸脫氫酶缺乏症(glucose 6- phosphate dehydrogenase defiency)、遺傳性血色素沉著症(hereditary hemochromatosis)、遺傳性血栓形成(hereditary thrombophilia)。 此外,FDA更要求所有DTC測試在醫療用途目的上之使用必需要能跟消費者溝通,使消費者可以充分了解該測試法後選用。其中一個研究顯示,23andMe的GHR測試的相關資訊是容易被理解的,有90%的人能夠了解報告中所呈現的資訊。
歐盟議會發布《可信賴人工智慧倫理準則》2019年4月9日,歐盟議會發布《可信賴人工智慧倫理準則》(Ethics Guidelines for Trustworthy AI)。此次內容大致延續歐盟人工智慧高階專家小組(High-level Expert Group on Artificial Intelligence)於2018年12月18日發布的《可信賴人工智慧倫理準則草案》(Draft Ethics Guidelines for Trustworthy Artificial Intelligence)之內容,要求人工智慧須遵守行善(do good)、不作惡(do no harm)、保護人類(preserve human Agency)、公平(be fair)與公開透明(operate transparency)等倫理原則;並在4月9日發布的正式內容中更加具體描述可信賴的人工智慧的具體要件,共計七面向概述如下: 人類自主性和監控(Human agency and oversight):AI係為強化人類能力而存在,使人類使用者能夠做出更明智的決策並培養自身的基礎能力。同時,AI應有相關監控機制以確保AI系統不會侵害人類自主性或是引發其他負面效果。本準則建議,監控機制應可透過人機混合(一種整合人工智慧與人類協作的系統,例如human-in-the-loop, human-on-the-loop, and human-in-command)的操作方法來實現。 技術穩健性和安全性(Technical Robustness and safety):為防止損害擴張與確保損害最小化,AI系統除需具備準確性、可靠性和可重複性等技術特質,同時也需在出現問題前訂定完善的備援計劃。 隱私和資料治理(Privacy and data governance):除了確保充分尊重隱私和資料保護之外,還必須確保適當的資料治理機制,同時考慮到資料的品質和完整性,並確保合法近用資料為可行。 透明度(Transparency):資料、系統和AI的商業模型應該是透明的。可追溯性機制(Traceability mechanisms)有助於實現這一目標。此外,應以利害關係人能夠理解的方式解釋AI系統的邏輯及運作模式。人類參與者和使用者需要意識到他們正在與AI系統進行互動,並且必須了解AI系統的功能和限制。 保持多樣性、不歧視和公平(Diversity, non-discrimination and fairness):AI不公平的偏見可能會加劇對弱勢群體的偏見和歧視,導致邊緣化現象更為嚴重。為避免此種情況,AI系統應該設計為所有人皆可以近用,達成使用者多樣性的目標。 社會和環境福祉(Societal and environmental well-being):AI應該使包含我們的後代在內的所有人類受益。因此AI必須兼顧永續發展、環境友善,並能提供正向的社會影響。 問責制(Accountability):應建立機制以妥當處理AI所導致的結果的責任歸屬,演算法的可審計性(Auditability)為關鍵。此外,應確保補救措施為無障礙設計。
可專利性(Patentability)與專利適格(Patent-Eligibility)有何不同?可專利性(Patentability)與專利適格(Patent-Eligibility)常被混用,但實際上兩者並不可以畫上等號。 具專利適格不等於可專利一事,在指標判例In re Bilski可窺知端倪:「新穎性(Novelty)、進步性(Non-obviousness,或稱非顯而易見性)的分析,和35 U.S.C. §101(專利適格的法源)無關,而是分別以35 U.S.C. §102、35 U.S.C. §103作為法源。」顯示專利適格、實用性(Utility,或稱「產業利用性」)、新穎性、進步性,互不隸屬。梳理美國專利法教課書(Casebook)和判決內容,可知:「專利適格」是取得專利的基礎門檻、資格,具專利適格,並不必然可專利,還須符合實用性、新穎性、可進步性,才是一個「可專利」的發明。另應強調,「專利適格」除了需要滿足§101法條文字外,還需要滿足美國專利與商標局(USPTO)的兩階段標準(Two-Step Test)審查。 綜上,可整理出這個公式: 可專利性=專利適格(§101+兩階段標準)+實用性(§101)+新穎性(§102)+進步性(§103) 觀察美國專利法教科書的編排方式,亦可了解思考脈絡:先介紹專利適格,再依序介紹實用性、新穎性、進步性。另,「實用性」在作為名詞時是採“Utility”一字,而非“Usefulness”,這兩個詞微妙的差異是前者具「有價值的(Beneficial)」之意涵,也呼應Justice Story在 Bedford v. Hunt對「實用」(Useful)經常被援引的解釋:「要能在社會中做出有價值的(Beneficial)應用,不可以是對道德、健康、社會秩序有害(Injurious)的發明,也不可以是瑣碎(Frivolous)或不重要的(Insignificant)。」