澳洲產業、科學、能源及資源部(Department of Industry, Science, Energy and Resources)於2020年5月15日舉行全國數位經濟與科技會議,並於會後發表「2020年5月全國數位經濟與科技會議會後聲明」。本次會議由澳洲產業科學能源及資源部部長擔任主席,邀集各州、領地地方政府的創新或科技部門首長,以視訊方式研商COVID-19疫情後如何整合澳洲企業的數位能量,並使澳洲在2030年成為全球數位經濟的領先者。
聲明中首先肯定澳洲數以萬計的企業在面對COVID-19疫情時所展現的危機應對能力與提出各式數位科技解決方案,用以支持員工、服務消費者、提出資源供應的替代方案、溝通利害關係人等,有效地提升了營運與財務上的效率。而政府則藉由提供各式財務、社會保險與稅務上的支援措施,並持續針對個別情況規劃最適的支援方案。
聲明指出根據研究,數位工具將能協助小型企業每週節省約10小時的工時,並提升約27%的營收;若乘上澳洲全國小型企業的總數,等於每週可省下約2200萬小時的工時,並可年增約3850億元的營收。企業在疫情期間所採取的數位科技解決方案是未來推動營運模式數位轉型的契機,因此在疫情後整合澳洲官方與民間的數位能量,將是疫情後經濟復甦與未來經濟成長的關鍵。
聲明指出與會聯邦及地方政府相關首長已達成共識,將組成「數位經濟與科技資深官員小組」(Digital Economy and Technology Senior Officials Group),專責整合聯邦政府與地方政府的數位政策。本小組將提出數位經濟政策與企業所需的支援措施,用以加速數位轉型與COVID-19疫情後的經濟復甦,包含完成人工智慧及自主系統能力地圖(Artificial Intelligence and Autonomous Systems Capability Map),來找出尚待強化的能力與可加強合作的契機。
此外本小組將合作推動數位與資通安全工作、關鍵技術法規鬆綁,以協助減少企業法遵障礙並支持數位經濟成長。COVID-19疫情下揭示澳洲推動數位轉型的重要性,期許本小組能有效整合數位能量並填補數位落差,未來將每年召開三次全國數位經濟與科技會議,追蹤澳洲數位經濟與科技生態系的推動情形,並聽取資深官員小組的定期工作報告。
本文為「經濟部產業技術司科技專案成果」
落實完善數位資料管理機制, 有助於降低AI歧視及資料外洩風險 資訊工業策進會科技法律研究所 2023年07月07日 近年來,科技快速發展,AI(人工智慧)等技術日新月異,在公私部門的應用日益廣泛,而且根據美國資訊科技研究與顧問公司Gartner在2023年5月發布的調查指出,隨著由OpenAI開發的ChatGPT取得成功,更促使各領域對於AI應用的高度重視與投入[1],與此同時,AI歧視及資料外洩等問題,亦成為社會各界的重大關切議題。 壹、事件摘要 目前AI科技發展已牽動全球經濟發展,根據麥肯錫公司近期發布的《生成式人工智慧的經濟潛力:下一個生產力前沿(The next productivity frontier)》研究報告指出,預測生成式AI(Generative AI)有望每年為全球經濟增加2.6兆至4.4兆的經濟價值[2]。同時在美國資訊科技研究與顧問公司Gartner對於超過2500名高階主管的調查中,45%受訪者認為ChatGPT問世,增加其對於AI的投資。而且68%受訪者認為AI的好處大於風險,僅有5%受訪者認為風險大於好處[3]。然而有社會輿論認為AI的判斷依賴訓練資料,將可能複製人類偏見,造成AI歧視問題,而且若程式碼有漏洞或帳戶被盜用時,亦會造成資料外洩問題。 貳、重點說明 首先,關於AI歧視問題,以金融領域為例,近期歐盟委員會副主席Margrethe Vestager強調若AI用於可能影響他人生計的關鍵決策時,如決定是否能取得貸款,應確保申請人不受性別或膚色等歧視[4],同時亦有論者認為若用於訓練AI的歷史資料,本身存有偏見問題,則可能導致系統自動拒絕向邊緣化族群貸款,在無形之中加劇,甚至永久化對於特定種族或性別的歧視[5]。 其次,關於資料外洩問題,資安公司Group-IB指出因目前在預設情況下,ChatGPT將保存使用者查詢及AI回應的訊息紀錄,若帳戶被盜,則可能洩露機敏資訊。據統計在2022年6月至2023年5月間,在亞太地區有近41000個帳戶被盜,而在中東和非洲地區有近25000個帳戶被盜,甚至在歐洲地區也有近17000個帳戶被盜[6]。另外在2023年3月時,ChatGPT除了發生部分用戶能夠檢視他人聊天紀錄標題的問題外,甚至發生個人資料外洩問題,即用戶可能知悉他人的姓名、電子郵件,付款地址,信用卡到期日及號碼末四碼等資料[7]。 參、事件評析 對於AI歧視及資料外洩等問題,應透過落實完善數位資料治理與管理機制,以降低問題發生的風險。首先,在收集訓練資料時,為篩選適合作為模型或演算法基礎的資料,應建立資料評估或審查機制,減少或避免使用有潛在歧視問題的資料,以確保分析結果之精確性。 其次,不論對於訓練資料、分析所得資料或用戶個人資料等,均應落實嚴謹的資料保密措施,避免資料外洩,如必須對於資料進行標示或分類,並依照不同標示或分類,評估及採取適當程度的保密措施。同時應對於資料進行格式轉換,以無法直接開啟的檔案格式進行留存,縱使未來可能不慎發生資料外洩,任意第三人仍難以直接開啟或解析資料內容。甚至在傳送帳戶登入訊息時,亦應採取適當加密傳送機制,避免遭他人竊取,盜取帳戶或個人資料。 財團法人資訊工業策進會科技法律研究所長期致力於促進國家科技法制環境完善,於2021年7月發布「重要數位資料治理暨管理制度規範(Essential Data Governance and Management System,簡稱EDGS)」,完整涵蓋數位資料的生成、保護與維護,以及存證資訊的取得、維護與驗證的流程化管理機制,故對於不同公私部門的AI相關資料,均可參考EDGS,建立系統性數位資料管理機制或強化既有機制。 本文同步刊登於TIPS網站(https://www.tips.org.tw) [1]Gartner, Gartner Poll Finds 45% of Executives Say ChatGPT Has Prompted an Increase in AI Investment (May 3, 2023), https://www.gartner.com/en/newsroom/press-releases/2023-05-03-gartner-poll-finds-45-percent-of-executives-say-chatgpt-has-prompted-an-increase-in-ai-investment (last visited June 30, 2023). [2]McKinsey, The economic potential of generative AI: The next productivity frontier (June 14, 2023), https://www.mckinsey.com/capabilities/mckinsey-digital/our-insights/the-economic-potential-of-generative-AI-the-next-productivity-frontier#introduction (last visited June 30, 2023). [3]Gartner, supra note 1. [4]Zoe Kleinman, Philippa Wain & Ashleigh Swan, Using AI for loans and mortgages is big risk, warns EU boss (June 14, 2023), https://www.bbc.com/news/technology-65881389 (last visited June 30, 2023). [5]Ryan Browne & MacKenzie Sigalos, A.I. has a discrimination problem. In banking, the consequences can be severe (June 23, 2023), https://www.cnbc.com/2023/06/23/ai-has-a-discrimination-problem-in-banking-that-can-be-devastating.html (last visited June 30, 2023). [6]Group-IB, Group-IB Discovers 100K+ Compromised ChatGPT Accounts on Dark Web Marketplaces; Asia-Pacific region tops the list (June 20, 2023), https://www.group-ib.com/media-center/press-releases/stealers-chatgpt-credentials/ (last visited June 30, 2023). [7]OpenAI, March 20 ChatGPT outage: Here’s what happened (Mar. 24, 2023),https://openai.com/blog/march-20-chatgpt-outage (last visited June 30, 2023).
世界智慧財產權組織發表2020年全球創新指數報告世界智慧財產權組織(World Intellectual Property Organization, WIPO)於2020年9月2日發表「2020年全球創新指數報告」(Global Innovation Index 2020, GII 2020),報告中比較131個經濟體之最新全球創新趨勢。GII為一年一度發行之報告,除了比較不同經濟體的創新指數外,每年會挑選不同創新議題進行深度研究,2020年研究主題為「誰投資創新?」(WHO WILL FINANCE INNOVATION?)。 GII的報告評比,區分為七大指標分別為:組織機構(Institutions)、研發與人力資源(Human capital and research)、基礎建設(Infrastructure)、市場成熟度(Market Sophistication)、企業成熟度(Business sophistication)、知識技術產出(Knowledge and technology outputs)以及創意產出(Creative outputs)。其下再區分為21個次標和80個小標例如政府效能(Government effectiveness)、法規範環境建構(Regulatory environment)、教育支出占GDP比例、外國學生比例、R&D支出占GDP比例、生態永續度、高科技出口、資通訊服務出口等。2020年評比全球創新指數最高的10個國家排名分別為:瑞士、瑞典、美國、英國、荷蘭、丹麥、芬蘭、新加坡、德國和南韓,均為高所得國家;這也是南韓第一次躋身進入前10名。 另外報告中亦說明,2020年COVID-19大流行引發前所未有的經濟停滯。在COVID-19爆發之前,研發支出成長明顯快於全球GDP成長,創業投資(Venture capital)和IP應用達到高峰,但疫情發生的現階段全球經濟成長大幅度下降。然而經濟成長停滯之下,突破性技術創新的潛力仍在繼續存在,例如許多仍保有現金流的大型ICT企業仍持續推動數位創新,製藥技術與生物科技產業的研發支出大量增加,健康產業研發也受到重點關注。此外,COVID-19危機亦會促進傳統產業(例如旅遊、教育和零售等)之創新,以及改變企業在本地或全球之生產工作組織方式。而在各國政府為忙於制定緊急救濟計畫(emergency relief packages),以緩解地域封鎖所造成的負面影響和經濟衰退的同時,這些緊急救濟計畫對新創公司之融資多半不夠明確,到目前為止,各國政府並沒有創新研發作為當前刺激經濟計畫中的優先事項(priority)。 報告中針對「誰投資創新?」之主題,統計數據顯示創新金融(Innovation finance)雖然受疫情影響有所下降,但金融體系尚屬健全。惟資助新創企業的資金正在枯竭(drying up),北美、亞洲和歐洲地區的創業投資交易也急劇下降,幾乎看不到首次公開發行(IPO)。即使是倖存下來的新創公司,其盈利能力和對創投者(Venture Capitalist)的吸引力也在下降。也因為疫情影響,創投者減少對創新、小型和多元化的新創事業提供資金,取而代之關注所謂的「大型交易」(mega-deals),也就是資助大型企業的發展,並將投資領域轉向健康、線上教育(online education)、大數據、電子商務和機器人科技。此外,報告中亦說明近期創投多半集中在可以短期得到報酬的創新事業,例如資通訊軟體及服務、消費性產品服務、金融商品等,取得創投機構大量資金。相較之下,若研發較為複雜的前瞻科學技術,反而取得之資金較少;同時COVID-19惡化此現象,使研發期較長之產業和企業面臨更嚴峻的財務限制。
美國商務部產業安全局擴大對中國半導體製造設備、軟體工具、高頻記憶體等項目之出口管制.Pindent{text-indent: 2em;} .Noindent{margin-left: 2em;} .NoPindent{text-indent: 2em; margin-left: 2em;} .No2indent{margin-left: 3em;} .No2Pindent{text-indent: 2em; margin-left: 3em} .No3indent{margin-left: 4em;} .No3Pindent{text-indent: 2em; margin-left: 4em} 美國商務部產業安全局(Bureau of Industry and Security,簡稱BIS)於2024年12月2日發布《外國生產的直接產品規則補充以及先進運算及半導體製造項目管制精進》(Foreign-Produced Direct Product Rule Additions, and Refinements to Controls for Advanced Computing and Semiconductor Manufacturing Items),並於同日(12月2日)生效,部分管制措施的法律遵循延後至2024年12月31日。BIS開放公眾可以就本次管制提出意見。 因中國的半導體戰略旨在進一步推進中國的軍事現代化、大規模殺傷性武器(WMD)的發展,美國政府認為中國的相關政策與措施,將可能侵害美國及其友盟之國家安全。因此,本次管制之目的旨在進一步削弱中國生產先進節點半導體的能力,包括下一個世代的先進武器系統,以及具有重要軍事應用的人工智慧與先進運算。 為達上述目的,本次管制修正具體擴大的管制項目概述如下: 1. 24種半導體製造設備,包括某些蝕刻(etch)、沉積(deposition)、微影(lithography)、離子注入(ion implantation)、退火(annealing)、計量(metrology)和檢驗(inspection)以及清潔(cleaning)工具。 2. 3種用於開發或生產半導體的軟體工具。 3. 管制源自美國的高頻寬記憶體,以及於美國境外生產且美國管制清單中所列之高頻寬記憶體。 4. 新增對電子電腦輔助設計(Electronic Computer Aided Design)與技術電腦輔助設計(Technology Computer Aided Design)軟體及技術的限制。
美國平等就業機會委員會發布「評估就業篩選程序中使用軟體、演算法及AI之不利影響」技術輔助文件美國平等就業機會委員會(Equal Employment Opportunity Commission, EEOC)於2023年5月18日發布「根據 1964 年《民權法》第七章評估就業篩選程序中使用軟體、演算法和AI之不利影響」(Assessing Adverse Impact in Software, Algorithms, and Artificial Intelligence Used in Employment Selection Procedures Under Title VII of the Civil Rights Act of 1964)之技術輔助文件(下簡稱「技術輔助文件」),以防止雇主使用自動化系統(automated systems)對求職者及員工做出歧視決定。 該技術輔助文件為EEOC於2021年推動「AI與演算法公平倡議」(Artificial Intelligence and Algorithmic Fairness Initiative)計畫的成果之一,旨在確保招募或其他就業決策軟體符合民權法要求,並根據EEOC 1978年公布之「受僱人篩選程序統一指引」(Uniform Guidelines on Employee Selection Procedures, UGESP),說明雇主將自動化系統納入就業決策所應注意事項。 當雇主對求職者與員工做出是否僱用、晉升、終止僱傭,或採取類似行動之決定,是透過演算法決策工具(algorithmic decision-making tool),對特定種族、膚色、宗教、性別、國籍或特定特徵組合(如亞洲女性),做出篩選並產生不利影響時,除非雇主能證明該決策與職位工作內容有關並符合業務需求,且無其他替代方案,否則此決策將違反《民權法》第七章規定。 針對如何評估不利影響,雇主得依UGESP「五分之四法則」(four-fifths rule),初步判斷演算法決策工具是否對某些族群產生顯著較低的篩選率。惟EEOC提醒五分之四法則推導出之篩選率差異較高時,仍有可能導致不利影響,雇主應依個案考量,使用實務常見的「統計顯著性」(statistical significance)等方法進一步判斷。 其次,當演算法決策工具係由外部供應商所開發,或由雇主授權管理人管理時,雇主不得以信賴供應商或管理人陳述為由規避《民權法》第七章,其仍應為供應商開發與管理人管理演算法決策工具所產生之歧視結果負責。 最後,EEOC鼓勵雇主應對演算法決策工具進行持續性自我評估,若發現該工具將產生不利影響,雇主得採取措施以減少不利影響或選擇不同工具,以避免違反《民權法》第七章。