華盛頓橄欖球隊(D.C. NFL)新商標命名充滿變數

  華盛頓橄欖球隊(Washington Football Team,簡稱D.C. NFL)原名為華盛頓紅皮隊(Washington Redskins),其名稱”Redskins”因具有種族歧視含意,一直以來都充滿爭議,雖然在漫長的法律程序中,成功的維護了他們的”Redskins”商標,然最終仍不敵輿論的壓力,在2020年7月放棄了這個已使用87年之久的商標。

  如何為球隊重新命名一個品牌名稱以替代那悠久且著名的原品牌名稱,且新名稱要能夠讓球迷具有認同感,對球隊來說本就不是件容易的事,何況還需要考慮到9月即將開始的NFL(The National Football League)賽季,這更名時程看來就顯得更加緊迫。除了考量到NFL為全球性的賽事,商標命名時所需考量的市場變成全球市場而使這任務更顯艱鉅之外,現在球隊將因為其球迷的行為,使得其新品牌的命名橫添變數。

  自1980年來即是球隊粉絲的菲利浦•馬丁•麥考利(Philip Martin McCaulay),已經留意到球隊更名的可能性,近年將可能的名稱先申請商標,除了華盛頓勇士隊(Washington Warriors)外,還包含華盛頓紅狼(Washington Red Wolves)、華盛頓紀念碑(Washington Monuments)、華盛頓熊貓(Washington Pandas)等多達40個商標,而且從美國專利商標局(United States Patent and Trademark Office)資料,麥考利顯然不是唯一一位這樣做的人,究竟是要取得他人的授權,或是經過漫長的命名流程,面對9月就要到來的賽季,已經沒有太多時間留給球隊考慮。

  隨著時間變遷,商標法中妨害公序良俗的認定亦會改變,因此品牌長期經營亦須時時檢視該商標在當下的涵義,及早變更因應的方向。

「本文同步刊登於TIPS網站(https://www.tips.org.tw )」

相關連結
※ 華盛頓橄欖球隊(D.C. NFL)新商標命名充滿變數, 資訊工業策進會科技法律研究所, https://stli.iii.org.tw/article-detail.aspx?d=8519&no=67&tp=1 (最後瀏覽日:2026/02/18)
引註此篇文章
你可能還會想看
歐盟《非歐盟國家智財權保護與執法成效報告》

  歐盟執委會於2020年1月8日發布《非歐盟國家智財權保護與執法成效報告》(Report on the protection and enforcement of intellectual property rights in third countries)。該報告自2006年起,每兩年出版一次,主要目的為確定特定非歐盟國家中智財權之保護與執法狀況,並列出每兩年的「優先關注國」(priority countries)清單。報告中亦說明,所謂「優先關注國」是對歐盟智財利益造成最大侵害的國家,而非指全球中智財保護狀況最有問題的國家。   本次報告臚列的國家中,中國為最需關注的第一級國家;第二級為印度、印尼、俄羅斯等;第三級則是阿根廷、巴西、馬來西亞、泰國、沙烏地阿拉伯等國。報告提到中國是歐盟境內仿冒品與盜版貨物的主要來源。在歐盟海關扣押的仿冒品與盜版貨物中,有百分之八十以上來自中國和香港。第二類優先國家,其智財保護與執法存在系統性問題,且問題解決上進度緩慢。而第三類優先國家智財領域表現上也有類似問題,僅在嚴重性和數量低於第二級優先國家。其中,沙烏地阿拉伯為今年新增為優先關注國家,研究報告指出該國常被作為中轉國家,傳輸歐盟境內仿冒與盜版貨物。   報告中亦提到上述國家共同問題,包含: 強制性技術轉讓策略(特別是中國)不利於外國產業(尤其是高科技產業)投資,使外國產業失去競爭優勢; 海關執法情形不一,往往沒有依職權採取人身拘提、扣押、銷燬仿冒及盜版貨物,或是未對運輸中的盜版貨品依法採取行動; 仿冒和盜版商品通常不會被執法部門直接銷燬,甚至會回到市場; 智財侵權罰則上,許多國家的懲罰過輕,無法造成威懾作用。 因缺乏執法政治意願和資源,使國家智財權執法情況薄弱,也導致技術基礎設施、人力資源、專業能力,甚或司法、行政以及一般公眾對智財權價值認識不足。

歐盟會員國要求分享DNA資料庫

  歐盟十五個會員國為強化對抗恐怖攻擊、跨邊境犯罪及非法遷徙之國際合作,於2007年3月28日提出有關資料分享的立法草案,以期歐盟能夠建立一套資料分享的機制與架構。立法草案明確規範了各成員國就資料保護所應給予的等級,其必須保證個人資料保護必須達到與1980年歐洲理事會(Council of Europe)通過的「保護自動化處理個人資料公約(Convention for the Protection of Individuals with Regard to Automatic Processing of Personal Data)」及其於2001年通過的附加議定書相同等級。   該立法草案係根據「Prüm條約」而來,其條約簽署背景為2004年馬德里的恐怖組織炸彈攻擊事件,有鑑打擊恐怖攻擊及跨國犯罪之國際合作,歐盟七個會員國於2005年5月27日在德國、比利時及盧森堡邊境的城市Prüm,簽訂了該條約。條約中規定,簽署國之警察及刑事追訴機關執法於恐怖攻擊及跨邊境犯罪時,得向他簽署國處理相關資料之單位請求有關DNA之分析資料、指紋及相關車籍資料。   目前,歐盟資料保護監督機構(European Data Protection Supervisor)已背書支持建立該機制與架構,並且聲明表示,該架構之建立,仍應注意資料保護的相關事項,在追求資料分享更為便利的同時,應給予人民更為足夠的保護,再者,資料處理的權責單位對於不同的資料類型,也應以不同的方式處理之,越敏感性的資料越應限制其使用目的,並且讓越少人得以接觸。

美國FirstNet與AT&T協議共建全美公共安全寬頻網

  美國自911事件後,事後檢討之建議之一為統合全美單一公共安全網路,可供跨部門之第一線救災人員使用。俟後美國於2008年拍賣700MHz頻段 (Auction 73)時,原本將Block D (788-793MHz/ 758-763MHz)共10MHz規劃為全國單一執照(Nationwide License),並與公共安全(public safety)頻段相連,得標者須與美國政府簽訂網路分享協議(Network Sharing Agreement, NSA),在必要時供緊急服務優先使用,惟該頻段歷經兩次拍賣均低於底價流標。2012年,商務部成立獨立機構First Responder Network Authority (下稱FirstNet),規劃如何統合所有與公共安全相關之通訊網路,FCC在2016年將前述流標之700MHz頻段撥交FirstNet使用。   FirstNet 2017年3月宣布與AT&T達成25年之合作協議,由AT&T協助該機構建置緊急服務人員專用之全國性LTE無線寬頻網路,該網路之主要用途為當緊急事故發生時,第一線之人員可利用該關鍵基礎設施進行通訊聯繫之用。FirstNet與AT&T的合作協議主要包括以下三個部分: FirstNet將提供上下行合計共20MHz 之頻譜 (788-798MHz / 758-768MHz),該頻段係美國主要之LTE頻段,商業價值極高,且設備之生態圈極為成熟。此外,FirstNet也將在未來5年提供65億美金的建設經費,該經費來源為FCC過去頻譜拍賣之標金收入。 AT&T承諾於25年內投入400億美金用於網路基礎設施的建設與維運,並確保網路的覆蓋率。 FirstNet同意在該網路未用於緊急服務時,得做為AT&T商業網路之一部分進行營運,但是當有緊急服務需求時,應立即提供緊急救難使用。   近年來,公共安全災防 (Public Protection and Disaster Relief)寬頻網路已成為許多先進國家的首要推動政策,包含英國與境內第一大電信商Everything Everywhere (EE)合作,芬蘭政府近來亦與電信商Telia共同合作測試LTE技術之公共安全網路。

用ChatGPT找法院判決?從Roberto Mata v. Avianca, Inc.案淺析生成式AI之侷限

用ChatGPT找法院判決?從Roberto Mata v. Avianca, Inc.案淺析生成式AI之侷限 資訊工業策進會科技法律研究所 2023年09月08日 生成式AI是透過研究過去資料,以創造新內容和想法的AI技術,其應用領域包括文字、圖像及影音。以ChatGPT為例,OpenAI自2022年11月30日發布ChatGPT後,短短二個月內,全球月均用戶數即達到1億人,無疑成為民眾日常生活中最容易近用的AI科技。 惟,生成式AI大量使用後,其中的問題也逐漸浮現。例如,ChatGPT提供的回答僅是從所學習的資料中統整歸納,無法保證資料的正確性。Roberto Mata v. Avianca, Inc.案即是因律師利用ChatGPT撰寫訴狀,卻未重新審視其所提供判決之正確性,以致後續引發訴狀中所描述的判決不存在爭議。 壹、事件摘要 Roberto Mata v. Avianca, Inc.案[1]中,原告Roberto Mata於2019年8月搭乘哥倫比亞航空從薩爾瓦多飛往紐約,飛行過程中膝蓋遭空服員的推車撞傷,並於2022年2月向法院提起訴訟,要求哥倫比亞航空為空服員的疏失作出賠償;哥倫比亞航空則主張已超過《蒙特婁公約》(Montreal Convention)第35條所訂之航空器抵達日起兩年內向法院提出損害賠償之請求時效。 R然而,法院審理過程中發現原告訴狀內引用之六個判決無法從判決系統中查詢,進而質疑判決之真實性。原告律師Steven A. Schwartz因而坦承訴狀中引用的六個判決是ChatGPT所提供,並宣稱針對ChatGPT所提供的判決,曾多次向ChatGPT確認該判決之正確性[2]。 貳、生成式AI應用之潛在風險 雖然運用生成式AI技術並結合自身專業知識執行特定任務,可能有助於提升效率,惟,從前述Roberto Mata v. Avianca, Inc.案亦可看出,依目前生成式AI技術之發展,仍可能產生資訊正確性疑慮。以下彙整生成式AI應用之8大潛在風險[3]: 一、能源使用及對環境危害 相較於傳統機器學習,生成式AI模型訓練將耗費更多運算資源與能源。根據波士頓大學電腦科學系Kate Saenko副教授表示,OpenAI的GPT-3模型擁有1,750億個參數,約會消耗1,287兆瓦/時的電力,並排放552噸二氧化碳。亦即,每當向生成式AI下一個指令,其所消耗的能源量相較於一般搜尋引擎將可能高出4至5倍[4]。 二、能力超出預期(Capability Overhang) 運算系統的黑盒子可能發展出超乎開發人員或使用者想像的隱藏功能,此發展將會對人類帶來新的助力還是成為危險的阻力,則會隨著使用者之間的相互作用而定。 三、輸出結果有偏見 生成式AI通常是利用公開資料進行訓練,若輸入資料在訓練時未受監督,而帶有真實世界既存的刻板印象(如語言、種族、性別、性取向、能力、文化等),據此建立之AI模型輸出結果可能帶有偏見。 四、智慧財產權疑慮 生成式AI進行模型訓練時,需仰賴大量網路資料或從其他大型資料庫蒐集訓練資料。然而,若原始資料來源不明確,可能引發取得資料未經同意或違反授權條款之疑慮,導致生成的內容存在侵權風險。 五、缺乏驗證事實功能 生成式AI時常提供看似正確卻與實際情形不符的回覆,若使用者誤信該答案即可能帶來風險。另外,生成式AI屬於持續動態發展的資訊生態系統,當產出結果有偏誤時,若沒有大規模的人為干預恐難以有效解決此問題。 六、數位犯罪增加與資安攻擊 過去由人工產製的釣魚郵件或網站可能受限於技術限制而容易被識破,然而,生成式AI能夠快速建立具高度說服力的各種擬真資料,降低詐騙的進入門檻。又,駭客亦有可能在不熟悉技術的情況下,利用AI進一步找出資安弱點或攻擊方法,增加防禦難度。 七、敏感資料外洩 使用雲端服務提供商所建立的生成式AI時,由於輸入的資料存儲於外部伺服器,若要追蹤或刪除有一定難度,若遭有心人士利用而導致濫用、攻擊或竄改,將可能產生資料外洩的風險。 八、影子AI(Shadow AI) 影子AI係指開發者未知或無法控制之AI使用情境。隨著AI模型複雜性增加,若開發人員與使用者未進行充分溝通,或使用者在未經充分指導下使用 AI 工具,將可能產生無法預期之風險。 參、事件評析 在Roberto Mata v. Avianca, Inc.案中,法院關注的焦點在於律師的行為,而非對AI技術使用的批判。法院認為,隨著技術的進步,利用可信賴的AI工具作為協助用途並無不當,惟,律師應踐行其專業素養,確保所提交文件之正確性[5]。 當AI科技發展逐漸朝向自主與獨立的方向前進,仍需注意生成式AI使用上之侷限。當個人在使用生成式AI時,需具備獨立思考判斷的能力,並驗證產出結果之正確性,不宜全盤接受生成式AI提供之回答。針對企業或具高度專業領域人士使用生成式AI時,除確認結果正確性外,更需注意資料保護及治理議題,例如建立AI工具合理使用情境及加強員工使用相關工具之教育訓練。在成本能負擔的情況下,可選擇透過企業內部的基礎設施訓練AI模型,或是在訓練模型前確保敏感資料已經加密或匿名。並應注意自身行業領域相關法規之更新或頒布,以適時調整資料使用之方式。 雖目前生成式AI仍有其使用之侷限,仍應抱持開放的態度,在技術使用與風險預防之間取得平衡,以能夠在技術發展的同時,更好地學習新興科技工具之使用。 [1]Mata v. Avianca, Inc., 1:22-cv-01461, (S.D.N.Y.). [2]Benjamin Weiser, Here’s What Happens When Your Lawyer Uses ChatGPT, The New York Times, May 27, 2023, https://www.nytimes.com/2023/05/27/nyregion/avianca-airline-lawsuit-chatgpt.html (last visited Aug. 4, 2023). [3]Boston Consulting Group [BCG], The CEO’s Roadmap on Generative AI (Mar. 2023), https://media-publications.bcg.com/BCG-Executive-Perspectives-CEOs-Roadmap-on-Generative-AI.pdf (last visited Aug. 29, 2023). [4]Kate Saenko, Is generative AI bad for the environment? A computer scientist explains the carbon footprint of ChatGPT and its cousins, The Conversation (May 23, 2023.), https://theconversation.com/is-generative-ai-bad-for-the-environment-a-computer-scientist-explains-the-carbon-footprint-of-chatgpt-and-its-cousins-204096 (last visited Sep. 7, 2023). [5]Robert Lufrano, ChatGPT and the Limits of AI in Legal Research, National Law Review, Volume XIII, Number 195 (Mar. 2023), https://www.natlawreview.com/article/chatgpt-and-limits-ai-legal-research (last visited Aug. 29, 2023).

TOP