因應加密貨幣投資交易盛行,美國貨幣監理局(Office of the Comptroller of the Currency, OCC)於2020年7月22日發布一封解釋函,授權聯邦註冊銀行和聯邦儲蓄協會(federal savings associations)可為客戶的加密貨幣或數位資產提供保管服務,促使銀行持續發揮金融中介功能。此舉將有助於加密貨幣推動發展。
依據解釋函內容,聯邦註冊銀行和聯邦儲蓄協會若從事加密貨幣保管業務,主要注意要點包含必須制定健全的風險管理規範;所提供之服務須與銀行的整體業務計劃和策略一致;須以安全可靠之方式進行,包含建立適當系統以識別、衡量、監控和控制其保管服務的風險;審核帳戶是否符合洗錢防制法令;維持適當有效之內部控制制度;確保銀行所保管之資產與自有資產分開存放,並在共同控制的情況進行維護,以確保資產不會被內部或外部人員損失、毀損或挪用;維護有效之資訊安全基礎架構與控制措施,以減少駭客入侵、竊盜和詐騙;判斷是否需要專門的查核程序;提供可靠的財務報告,以及遵守相關法律規範。
貨幣監理局表示,加密貨幣保管服務,包含持有與加密貨幣相關連的密鑰,屬傳統銀行保管業務的延伸,為銀行業推動現代化營運的表現。隨著金融市場數位化,銀行與其他服務提供商將需要利用新技術和創新方式,以滿足客戶的金融服務需求。
英國財政大臣(Chancellor of the Exchequer)George Osborne日前於今(2011)年3月23日發表財政報告時宣佈,英國綠色投資銀行(UK Green Investment Bank, GIB)預計於2012年開始正式對外營業,且其開放對象為各相關產業。而未來英國GIB之營業項目,主要將針對具有高度風險,或是市場成本回收需要長時間等待之相關低碳企劃案進行經費補助,同時亦進一步制定二氧化碳排放價格。 早在2009年2月時,英國三大非營利組織團體E3G、Friends of the Earth、以及Climate Change Capital即共同發表一份聯合聲明提議成立綠色投資銀行,以鼓勵發展低碳經濟。然而,該份提議報告乃至2010年3月才正式獲得政府相關人士的重視,因其意識到綠色投資銀行之成立,也許能符合當前英國對於基礎設施與能源發展之需求。不過,對於綠色投資銀行是否成立之辯論,乃持續到今年3月才正式拍板定案,根據上述之政府財政報告,英國政府計劃於該投資銀行成立後,投注3億英鎊經費投資相關低碳企劃案之推行,並預計於2015年時,另外由私部門投注15億英磅補助相關企劃案,而其經費補助對象層面將以相關產品市場(market)為主。 英國能源與氣候變遷部(Department of Energy and Climate Change)國務卿(Secretary of State)Chris Huhne表示,綠色投資銀行成立後,在結合來自各方之穩定資金下,必能藉由投資綠色能源研發之方式,創造一個穩定且平衡的經濟成長。同時,相關政府單位亦期盼,未來綠色投資銀行除了能提供政府相關領域之經費分配,與研發技術之建議外,亦能以創造具商業價值之產品,達到分散私人投資風險之目的。
智慧聯網之發展與個人資訊隱私保護課題:以歐盟之因應為例 世界衛生組織發布人工智慧於健康領域之監管考量因素文件,期能協助各國有效監管健康領域之人工智慧世界衛生組織(World Health Organization, WHO)於2023年10月19日發布「人工智慧於健康領域之監管考量因素」(Regulatory considerations on artificial intelligence for health)文件,旨在協助各國有效監管健康領域之人工智慧,發揮其潛力同時最大限度地降低風險。本文件以下列六個領域概述健康人工智慧之監管考量因素: (1)文件化與透明度(Documentation and transparency) 開發者應預先規範(pre-specifying)以及明確記錄人工智慧系統(以下簡稱AI系統)之預期醫療目的與開發過程,如AI系統所欲解決之問題,以及資料集之選擇與利用、參考標準、參數、指標、於各開發階段與原始計畫之偏離及更新等事項,並建議以基於風險之方法(Risk-based approach),根據重要性之比例決定文件化之程度、以及AI系統之開發與確效紀錄之保持。 (2)風險管理與AI系統開發生命週期方法(Risk management and AI systems development lifecycle approaches) 開發者應在AI系統生命之所有階段,考慮整體產品生命週期方法(total product lifecycle approach),包括上市前開發管理、上市後監督與變更管理。此外,須考慮採用風險管理方法(risk management approach)來解決與AI系統相關之風險,如網路安全威脅與漏洞(vulnerabilities)、擬合不足(underfitting)、演算法偏差等。 (3)預期用途、分析及臨床確效(Intended use, and analytical and clinical validation) 開發者應考慮提供AI系統預期用途之透明化紀錄,將用於建構AI系統之訓練資料集組成(training dataset composition)之詳細資訊(包括大小、設定與族群、輸入與輸出資料及人口組成等)提供給使用者。此外,可考慮透過一獨立資料集(independent dataset)之外部分析確效(external analytical validation),展示訓練與測試資料以外之效能,並考慮將風險作為臨床確效之分級要求。最後,於AI系統之上市後監督與市場監督階段,可考慮進行一段期間密集之部署後監督(post-deployment monitoring)。 (4)資料品質(Data quality) 開發者應確認可用資料(available data)之品質,是否已足以支援AI系統之開發,且開發者應對AI系統進行嚴格之預發布評估(pre-release evaluations),以確保其不會放大訓練資料、演算法或系統設計其他元素中之偏差與錯誤等問題,且利害關係人還應考慮減輕與健康照護資料有關之品質問題與風險,並繼續努力創建資料生態系統,以促進優質資料來源之共享。 (5)隱私與資料保護(Privacy and data protection) 開發者於AI系統之設計與部署過程中,應考慮隱私與資料保護問題,並留意不同法規之適用範圍及差異,且於開發過程之早期,開發者即應充分瞭解適用之資料保護法規與隱私法規,並應確保開發過程符合或超過相關法規要求。 (6)參與及協作(Engagement and collaboration) 開發者於制定人工智慧創新與部署路線圖之期間,需考慮開發可近用且具有充足資訊之平台,以於適合與適當情況下促進利害關係人間之參與及協作;為加速人工智慧領域實務作法之進化,透過參與及協作來簡化人工智慧監管之監督流程即有必要。
歐盟國家推動智慧防救災下之資料開放、運用與傳遞法制政策研析