英國通訊傳播管理局(The Office of Communications, Ofcom)於2020年8月發布「開放通訊:使人們能夠透過創新服務共享資料」(Open Communications: Enabling people to share data with innovative services),針對開放通訊的設計原理提出七點建議:
除此之外,對於應開放何種資料則須循序漸進。除了增加對第三方客戶資料近用權限之外,首先,應針對開放對資料提供者風險低,但對潛在用戶有較高利益的資料,例如:不包含個人訊息的資料,從而降低匿名化過程中所產生之風險;第二,開放低風險的地理空間資料(geospatial data),目的在於改善該地區的整體地理空間資料基礎架構。最後才是開放有關各種通訊產品中的其他資料,以促進消費者的選擇和保護。
綜上所述,考慮到開放通訊之可行性,需進一步與其他資料可攜性計劃的主要代表進行會談(如銀行業者),尋求各行業主要服務提供商的支持。再者,考慮是否訂定相關法律以及如何進行監管。第三,應標準化客戶資料,以及確保資料移動之安全性及用戶控制權限,最後則是降低資料開放之成本,以達成開放通訊所帶來之效益。
德國聯邦資訊技術,電信和新媒體協會於2018年2月6日在更安全的網路研討會中針對利用人工智慧及自動決策技術利用提出建議指南(Empfehlungen für den verantwortlichen Einsatz von KI und automatisierten Entscheidungen),旨在提升企業數位化與社會責任,並提升消費者權益保護。 本份指南提出六項建議: 促進企業內部及外部訂定相關準則 例如規定公司在利用演算法和AI時,必須將影響評估列入開發流程,並列為公司應遵守的道德倫理守則,以確保開發的產品或服務符合公平及道德。 提升透明度 使用者如有興趣了解演算法及其含義,企業應協助調查並了解使用者想獲知的訊息,並透過相關訊息管道提升產品及服務透明度。因此,企業應努力使演算法及其操作和含義能夠被使用者理解。此亦涉及即將實施的歐盟一般資料保護規則中的透明度義務。在機器學習或深度學習情況下,可能會增加理解性和可追溯性難度,但有助於分析流程並使其更接近人類理解的方法在科學和商業實踐中,應特別關注並進一步討論。另外,透過教育及使用說明協助及控制功能,教導消費者係建立雙方信任的重要手段。企業應在第一線中說明產品或服務中使用的手段(演算法,機器學習,AI)。除了解釋使用那些技術來改進產品和服務外,應一併解釋如何從技術控制過程中獲得相關知識以及提供那些後援支持。另外,例如透過幫助頁面,儀表板或部落格,解釋發生什麼以及如何做出某些影響深遠的自動化決策,使用戶更了解有關使用自動決策相關訊息。因此建議企業採取強制有效以建立信任的措施,使用戶理解是否及如何使用相關演算法,此可能包括使用自動化決策,使用特定資料組和使用技術的目的,亦即使用戶對演算法,機器學習或AI支持的決策有基本的了解。 為全體利益使用相關技術 人工智慧等新技術之重要性不應被低估,目前在生活和工業等眾多領域皆有廣泛應用。對於個人和集體而言,將可帶來巨大的利益,因此應該充分利用。例如,人工智慧可降低語言障礙,幫助行動不便的人可更加獨立自主生活,改善醫療診斷,提升能源供應效率,甚至是交通規劃和搜索停車位,都只是人工智慧偉大且已被使用的案例。為促進技術發展,應公平地利用其優勢並預留商業應用模式的空間,同時充分解決涉及的具體風險。產業特定的解決方案十分重要,但應兼顧受影響者的利益,並與廣大公眾利益找出妥協平衡點,且應排除不適當的歧視。建議在使用決策支持技術時,應事先檢查相關後果並與其利益比較。例如,可以在資料保護影響評估的框架進行。作為道德準則的一部分,必須確保演算法盡可能量準確地預測結果。 開發安全的資料基礎 資料係人工智慧支援決策的基礎。與人為決策者相同,資料不完整或錯誤,將導致做出錯誤的決定。因此決策系統的可靠性仍取決資料的準確性。但資料質量和資料來源始終不能追溯到源頭,如果可能的話,只有匯總或非個人資料可用於分析或分類用戶群組。因此,確切細節不可被使用或揭露。因此建議企業應考慮要使用的資料、資料的類別和在使用AI系統前仔細檢查資料使用情況,特別是在自我學習系統中資料引入的標準,並根據錯誤來源進行檢查,且儘可能全面記錄,針對個人資料部分更應謹慎處理。 解決機器偏差問題 應重視並解決所謂機器偏差和演算法選擇和模型建立領域的相關問題。解釋演算法,機器學習或AI在基層資料選擇和資料庫時所產生決策偏見相當重要,在開發預期用途的演算法時必須納入考量,對員工應針對道德影響進行培訓,並使用代表性紀錄來創建可以識別和最小化偏差的方法。企業並應該提高員工的敏感度並培訓如何解決並減少機器偏見問題,並特別注意資料饋送,以及開發用於檢測模式的內、外部測試流程。 適合個別領域的具體措施和文件 在特別需要負責的決策過程,例如在車輛的自動控制或醫療診斷中,應設計成由責任主體保留最終的決策權力,直到AI的控制品質已達到或高於所有參與者水平。對類人工智慧的信任,並非透過對方法的無條件追踪來實現,而是經過仔細測試,學習和記錄來實現
數位創作透過非同質化代幣(NFT)交易之智財侵權風險數位創作藉由區塊鏈轉化為具獨特性之加密貨幣─非同質化代幣(non-fungible token,後稱NFT),仿佛數位創作者對創作成品簽名落款或標示出處來源,NFT也因此解決數位創作成品之來源與真偽驗證等問題,使其有如傳統的藝術作品更具收藏價值也更有利於在市場中交易,然而在此數位創作成為新型態數位收藏標的之同時,潛藏的智慧財產議題也衍生而出。 儘管NFT解決數位創作之產出來源等驗證問題,卻無法確保該NFT交易標的是否抄襲其他擁有著作權保護之創作。當收藏者轉售購入之數位創作時,便有可能構成販售侵權作品,根據美國著作權法第504條(c)項所列之賠償金額在750美元以上至3萬美元以下,甚至故意侵權賠償15萬美元。因此,如同一般傳統藝術交易,在NFT投資或收藏交易前,建議先對創作者或藝術家進行相關調查,甚至可諮詢法律顧問以確保交易標的智財狀況;此外,當交易標的屬戲謔創作時,則建議評估相對應之投資風險。 而數位創作之形式相當多元,除了數位影像、數位相片外,也含括社群媒體產出之網路迷因(meme)、虛擬圖片影像等,過去因為易於大量複製流傳而無法追溯原始創作者,如今在區塊鏈技術轉化下使前述類型之數位創作產出皆可能成為NFT交易標的。例如,今(2021)年三月美國數位藝術家Beeple於佳士得拍賣透過NFT將其作品〈每天:最初的五千天〉(Everydays: The First 5000 Days)以超過6,900萬美元的價格售出;Twitter共同創辦人Jack Dorsey以290萬美元透過NFT售出其第一則推文;此外,2011年在Youtube爆紅的像素影片〈彩虹貓〉(Nyan Cat)與2007年的英國小兄弟生活紀錄〈查理咬我的手指〉(Charlie Bit My Finger)等也透過NFT分別以超過50萬美元與超過76萬美元的金額售出。此外,根據比特幣交易所CoinDesk統計,NFT銷售額在今年上半年達到24.7億美元,反觀去年同期的1,370萬美元,NFT成了難以忽視的活絡產業。
以「公私夥伴關係(PPP)」發展科技之作法近來常聽聞各國以公私夥伴關係(Public-Private Partnership, PPP)之模式發展產業科技,PPP故名思義,係指結合公私部門之力量,以共同達成公共政策目標之合作模式。公部門可借重私部門的專業、經驗與品質,使其服務更有效率,私部門也可得到政府與政策之支持。 如今科技進步程度往往可代表ㄧ國之競爭力,惟科技研發需投入大量成本,因此各國多有針對科研補助之相關政策,從早年的單方補助,到如今強調公私合作進行科研的PPP模式。各國亦提出各種產官學合作研發的模式或組合之立法或相關政策。例如成立獨立非營利法人讓各項研發活動進行更方便、研究設施設備共享更容易的日本「技術研究組合」、芬蘭之SHOKs。荷蘭近來亦大力推行PPP研發之策略。德國之高科技領先戰略計畫( Spitzencluster-Wettbewerb)亦以區域聚落(該區域聚落即包含產業界、大學及其他相關學術機構)為單位,藉競爭給予補助的方式,促成該地區產官之緊密合作。
美國聯邦通訊委員會修改廣播電視業者對於兒童關看電視的保護義務美國聯邦通訊委員會( The Federal Communications Commission /FCC )在 2006 年 9 月,修改並解釋 2004 年一項課與廣播電視業者對兒童觀看電視保護義務之指令。在 2004 年提出的指令中對廣播電視業者有許多規定,包括:電視業者被要求提供兒童適當比例基準之核心( core )教育及資訊節目,並於該類型節目中全程播放中標示 E/I 的符號;允許在節目中出現網站網址,但限制兒童節目中顯示非與節目相關以及有商業目的之網站網址;原兒童節目之插播限制規定;以及修改所謂商業內容定義等。 這次對該指令的再修改,則是希望透過確保提供適當比例的兒童教育資訊節目、將廣告及其他兒童節目之行為納入商業內容定義,以及顯示網站網址之新限制規定,讓邁向數位化世界下之公眾利益能獲得保障。特別是在同時確保不過份削減廣播電視業者以及有線電視業者節目時間編排彈性下,保護兒童免於在廣播電視以及有線電視節目中,接收過多商業訊息。