英國通訊傳播管理局(The Office of Communications, Ofcom)於2020年8月發布「開放通訊:使人們能夠透過創新服務共享資料」(Open Communications: Enabling people to share data with innovative services),針對開放通訊的設計原理提出七點建議:
除此之外,對於應開放何種資料則須循序漸進。除了增加對第三方客戶資料近用權限之外,首先,應針對開放對資料提供者風險低,但對潛在用戶有較高利益的資料,例如:不包含個人訊息的資料,從而降低匿名化過程中所產生之風險;第二,開放低風險的地理空間資料(geospatial data),目的在於改善該地區的整體地理空間資料基礎架構。最後才是開放有關各種通訊產品中的其他資料,以促進消費者的選擇和保護。
綜上所述,考慮到開放通訊之可行性,需進一步與其他資料可攜性計劃的主要代表進行會談(如銀行業者),尋求各行業主要服務提供商的支持。再者,考慮是否訂定相關法律以及如何進行監管。第三,應標準化客戶資料,以及確保資料移動之安全性及用戶控制權限,最後則是降低資料開放之成本,以達成開放通訊所帶來之效益。
歐洲資料保護委員會(European Data Protection Board, EDPB)於2021年1月18日發布《個資侵害通知範例指引》(Guidelines 01/2021 on Examples regarding Data Breach Notification)草案,並進行為期六週之公眾諮詢。該指引針對2017年10月所發布之《個資侵害通知指引》(Guidelines on Personal data breach notification under Regulation 2016/679)透過案例分析進行補充說明,對於資料控制者如何識別侵害類別以及評估風險提出更詳細的實務建議,協助資料控制者處理資料外洩及風險評估考量因素之認定。 個資侵害係指違反安全性規定而導致傳輸、儲存或以其他方式處理之個資,遭意外或非法破壞、遺失、變更、未獲授權之揭露或近用之情形,由於個資事故將對資料主體可能造成重大不利影響,該指引首先要求資料控制者進行侵害類別之辨識,依據2017年指引將個資侵害分為機密性侵害(confidentiality breach)、完整性侵害(integrity breach)以及可用性侵害(availability breach)。而資料控制者最重要的義務在於主動識別系統漏洞,評估侵害對資料主體權利所產生之風險,制定適當計畫及程序採取適當因應措施,確定侵害事件之問題根因及安全漏洞,加強員工認知培訓及制定操作手冊,並確實記錄各項侵害行為,以提升個資事故因應效率及降低時間延誤。 此外,該指引彙整自GDPR實施以來個資侵害通知具體案例,分為勒索軟體攻擊、資料外洩攻擊、內部人為風險、硬體設備或紙本檔案失竊、誤發郵件以及電子郵件內容外洩,共六大主題十八件案例,針對不同程度風險提供最典型的正確及錯誤作法,並提出資料控制者有關預防潛在攻擊及減輕影響之措施建議。
德國2015年12月3日通過數位健康法(e-Health Gesetz)德國聯邦議會於2015年12月3日通過「健康制度安全數位通訊與應用法」 (下稱數位健康法,Gesetz für sichere digitale Kommunikation und Anwendungen im Gesundheitswesen, e-Health-Gesetz),本法無須經過聯邦參議院同意,最快將於2016 年初生效。 該法係以患者的權益和隱私為中心而制定。其中安全的數位基礎設施將改善健康照護、加強病患的自我決定權。數位健康法要求於全德範圍內,從2016 年中期開始至 2018年中,依法定之資訊技術基礎設施的時間表引進相關技術與設施,在醫療診所和醫院之間全面進行電信基礎設施的連結。 本法案要點摘要如下: • 最新一代的主資料管理(Stammdatenmanagement) (被保險人主資料(Versichertenstammdaten)的測試及更新) 將提供醫生最新資料和防止醫療給付濫用。這個數位健康卡第一個線上應用,將在2018 年中全面引進。而 2018 年 7 月 1 日起未參加線上被保險人主資料驗證之醫生,其補貼亦將削減。 • 醫療用緊急資料(Notfalldaten)應從 2018 年開始依被保險人意願在數位健康卡上儲存,以避免危險藥物的交互作用。因此,從2016 年 10 月開始,使用三種以上藥物患者,將收到藥物治療計畫(Medikationsplan)。而藥劑師自始即有義務在被保險人變更處方時更新之。從 2018 年開始,用藥計畫可以以電子傳輸方式從數位健康卡卡中檢索。 • 數位健康法將促進電子病歷(Arztbriefe)的推動。病患可以對其主治者告知其最重要的健康資料,並以數位資料形式儲存使用。另外,病患的權益和自主決定是本法重點,患者不僅可自行決定何種醫療資料應以卡片儲存,並可決定誰有權查閱。病患亦得提取卡片中儲存之資料。如血糖測量值、從可穿戴裝置或隨身手圈所量測的資料。 • 為提倡遠距醫療(Telemedizin),從 2017 年4 月開始遠距 x 光診斷評估和從 2017年7 月起,線上視訊諮詢時段納入醫療合約給付中。使病患更易獲取醫療訊息,同時在預後諮詢和監控諮詢中亦能得到醫療服務。 • 為進入遠端醫療時代,必須確保各種 IT 系統可以進行溝通,故須在 2017 年 6 月 30 日前提出互通性指引(Interoperabilitätsverzeichnis),使衛生部門不同的 IT 系統所採用的標準簡明化。 • 智慧手機和其他行動裝置使用健康APP已漸普及,到 2016 年底前應確認,被保險人是否可以使用相關設備來行使他們的醫療資料存取權限以及資料是否能夠相互連結進行傳輸。
FDA發布「制定醫療器械在上市前核准(PMA)、低風險創新器材(De Novo)分類和人道用途器材免除(HDE)的利益-風險決策之不確定性考量指引草案美國食品和藥物管理局(FDA)於2018年9月6日發布關於「制定醫療器械在上市前核准(PMA)、低風險創新器材(De Novo)分類和人道用途器材免除(HDE)的利益-風險決策之不確定性考量指引草案。」 為滿足FDA促進公共健康的使命,醫療器械上市前核准(PMA)通常涉及較高的不確定性,因此本指引是適當的解決利益風險的判定以支持FDA的決策。包含考量患病群願意接受醫療器械帶來的益處及風險之更多不確定性,特別是沒有可接受的替代治療方案時。 根據指引草案,FDA依據具體情況,判定其利益-風險的適當程度之不確定性,包括: (1) 醫療器械可能帶來好處程度。 (2) 醫療器械存在的風險程度。 (3) 關於替代治療或診斷的利益-風險之不確定程度。 (4) 如果可能,需瞭解患者對醫療器械可能帶來的益處和風險之不確定性觀點。 (5) 公共衛生需求的程度。 (6) 依據臨床證據可支持上市前之可行性。 (7) 能夠減少或解決醫療器械的上市後利益-風險留下之不確定性。 (8) 上市後緩解措施的有效性。 (9) 建立決策類型。(如上市前核准(PMA)和人道用途器材免除(HDE)的核准標準不同。) (10) 對於早期患者訪問醫療器械的可能帶來的益處。 本指引草案中,FDA基於考量有關醫療器械臨床/非臨床訊息之利益風險,需與FDA的規範、監管機關和要求要有一致性。
歐盟議會發布《可信賴人工智慧倫理準則》2019年4月9日,歐盟議會發布《可信賴人工智慧倫理準則》(Ethics Guidelines for Trustworthy AI)。此次內容大致延續歐盟人工智慧高階專家小組(High-level Expert Group on Artificial Intelligence)於2018年12月18日發布的《可信賴人工智慧倫理準則草案》(Draft Ethics Guidelines for Trustworthy Artificial Intelligence)之內容,要求人工智慧須遵守行善(do good)、不作惡(do no harm)、保護人類(preserve human Agency)、公平(be fair)與公開透明(operate transparency)等倫理原則;並在4月9日發布的正式內容中更加具體描述可信賴的人工智慧的具體要件,共計七面向概述如下: 人類自主性和監控(Human agency and oversight):AI係為強化人類能力而存在,使人類使用者能夠做出更明智的決策並培養自身的基礎能力。同時,AI應有相關監控機制以確保AI系統不會侵害人類自主性或是引發其他負面效果。本準則建議,監控機制應可透過人機混合(一種整合人工智慧與人類協作的系統,例如human-in-the-loop, human-on-the-loop, and human-in-command)的操作方法來實現。 技術穩健性和安全性(Technical Robustness and safety):為防止損害擴張與確保損害最小化,AI系統除需具備準確性、可靠性和可重複性等技術特質,同時也需在出現問題前訂定完善的備援計劃。 隱私和資料治理(Privacy and data governance):除了確保充分尊重隱私和資料保護之外,還必須確保適當的資料治理機制,同時考慮到資料的品質和完整性,並確保合法近用資料為可行。 透明度(Transparency):資料、系統和AI的商業模型應該是透明的。可追溯性機制(Traceability mechanisms)有助於實現這一目標。此外,應以利害關係人能夠理解的方式解釋AI系統的邏輯及運作模式。人類參與者和使用者需要意識到他們正在與AI系統進行互動,並且必須了解AI系統的功能和限制。 保持多樣性、不歧視和公平(Diversity, non-discrimination and fairness):AI不公平的偏見可能會加劇對弱勢群體的偏見和歧視,導致邊緣化現象更為嚴重。為避免此種情況,AI系統應該設計為所有人皆可以近用,達成使用者多樣性的目標。 社會和環境福祉(Societal and environmental well-being):AI應該使包含我們的後代在內的所有人類受益。因此AI必須兼顧永續發展、環境友善,並能提供正向的社會影響。 問責制(Accountability):應建立機制以妥當處理AI所導致的結果的責任歸屬,演算法的可審計性(Auditability)為關鍵。此外,應確保補救措施為無障礙設計。