為促進自駕車研發和推廣,日本國土交通省召集產官學研各界成立先進安全汽車(Advanced Safety Vehicle, ASV)推進檢討會,檢討設計自駕車時之注意事項,並於2020年7月17日公布「最後一哩路自駕車系統基本設計書」(ラストマイル自動運転車両システム基本設計書),希望能藉此達成確保地方交通運輸能量及加速自駕車落地之目標。
「最後一哩路自駕車系統基本設計書」將操作適用範圍(Operational Design Domain, ODD)定義為限定區域或駕駛環境條件,並提出所有自駕車應具備之共通ODD,包括(1)道路/地理條件︰目標道路、行駛道路;(2)環境條件︰時間、天氣;(3)行駛條件︰行駛速度;(4)行駛空間︰可支援自駕車行駛之基礎設施,以及可提醒用路人注意正在進行自駕車實驗之設施。此外,由於不同應用情境會影響ODD之設定,故本書以限定路線下往返之自駕車為代表,說明在個案中該如何進一步檢討ODD。以行駛速度為例,在共通ODD中,最後一哩路自駕車時速應為30公里,但在提供限定路線內往返之載客服務時,自駕車的時速應設定在12公里以下。最後,「最後一哩路自駕車系統基本設計書」內整理最後一哩路自駕車共通及特有之技術要件,以及設計時應留意和確認的問題。
本文為「經濟部產業技術司科技專案成果」
英國政府於2025年1月31日發布「人工智慧網路資安實務守則」(Code of Practice for the Cyber Security of AI,以下簡稱「實務守則」),目的是提供人工智慧(AI)系統的網路資安指引。該實務守則為英國參考國際上主要標準、規範後所訂定之自願性指引,以期降低人工智慧所面臨的網路資安風險,並促使人工智慧系統開發者與供應商落實基本的資安措施,以確保人工智慧系統的安性和可靠性。 由於人工智慧系統在功能與運作模式上與傳統網路架構及軟體有明顯的不同,因此產生新的資安風險,主要包含以下: 1. 資料投毒(Data Poisoning):在AI系統的訓練資料中蓄意加入有害或錯誤的資料,影響模型訓練結果,導致人工智慧系統產出錯誤推論或決策。 2. 模型混淆(Model Obfuscation):攻擊者有意識地隱藏或掩飾AI模型的內部運作特徵與行為,以增加系統漏洞、引發混亂或防礙資安管理,可能導致AI系統的安全性與穩定性受損。 3. 輸入間接指令(Indirect Prompt Injection):藉由輸入經精心設計的指令,使人工智慧系統的產出未預期、錯誤或是有害的結果。 為了提升實務守則可操作性,實務守則涵蓋了人工智慧生命週期的各階段,並針對相關角色提出指導。角色界定如下: 1. 人工智慧系統開發者(Developers):負責設計和建立人工智慧系統的個人或組織。 2. 人工智慧系統供應鏈(Supply chain):涵蓋人工智慧系統開發、部署、營運過程中的的所有相關個人和組織。 實務守則希望上述角色能夠參考以下資安原則,以確保人工智慧系統的安全性與可靠性: 1. 風險評估(Risk Assessment):識別、分析和減輕人工智慧系統安全性或功能的潛在威脅的過程。 2. 資料管理(Data management):確保AI系統整個資料生命週期中的資料安全及有效利用,並採取完善管理措施。 3. 模型安全(Model Security):在模型訓練、部署和使用階段,均應符合當時的技術安全標準。 4. 供應鏈安全(Supply chain security):確保AI系統供應鏈中所有利益相關方落實適當的安全措施。 「人工智慧網路資安實務守則」藉由清晰且全面的指導方針,期望各角色能有效落實AI系統安全管控,促進人工智慧技術在網路環境中的安全性與穩健發展。