美國德克薩斯州北區聯邦地方法院於2020年9月10日,駁回德國汽車零組件供應商大陸集團(Continental Automotive Systems)針對高通、諾基亞、夏普及其他電信公司透過Avanci授權標準必要專利(Standard Essential Patents, SEP)模式違反反托拉斯法的訴訟。法院指出,Avanci是由SEP專利技術擁有者組成的專利授權平台,而Avanci繞過零組件供應商,直接與汽車製造商就授權協議進行談判,並未違反反托拉斯法。
按大陸集團係依據《休曼法》(Sherman Antitrust Act)第2條提出反壟斷訴訟,指Avanic及其成員濫用標準制定的壟斷力量,排除其他技術擁有者並提高專利授權費用。對此,法院列舉聯邦第九巡迴法院在FTC v. Qualcomm案的相同看法指出,該行為是屬於Avanic及成員的契約問題,即SEP持有人可以選擇依照公平、合理、無歧視(Fair, Reasonable, Non-discriminatory, FRAND)的契約方式限制SEP授權,但違反此契約義務並不違反反托拉斯法。大陸集團主張SEP持有人違反FRAND授權承諾,欺騙標準制定組織,從而將專利納入產業標準;但即使這種欺騙會將被告的競爭者排除在標準之外,乃是針對競爭者本身而不是對競爭過程的損害,SEP權利人藉由價格歧視(Price Discrimination)合法地將專利價值最大化並不違反反托拉斯法。
另外,原告控訴依據還包括《休曼法》第1條,禁止事業以契約等方式限制競爭。但法院認為Avanci授權模式是與組成公司間協議訂定,該協議並不會阻止成員向非製造端客戶單獨授權。在SEP授權人拒絕與原告進行談判,或僅同意以向汽車製造商授權的相同價格與零組件供應商進行交易,頂多屬於SEP權利人間的個別行動,並未違反反托拉斯法,因而駁回訴訟。
本文為「經濟部產業技術司科技專案成果」
歐盟執委會(European Commission)於2022年9月28日通過《人工智慧責任指令》(AI Liability Directive)之立法提案,以補充2021年4月通過之《人工智慧法》草案(Artificial Intelligence Act)。鑑於人工智慧產品之不透明性、複雜性且具自主行為等多項特徵,受損害者往往難以舉證並獲得因人工智慧所造成之損害賠償,《人工智慧責任指令》立法提案即為促使因人工智慧而受有損害者,得以更容易獲得賠償,並減輕受損害者請求損害賠償之舉證責任。 《人工智慧責任指令》透過引入兩個主要方式:(一)可推翻之推定(rebuttable presumptions):人工智慧責任指令透過「因果關係推定(presumption of causality)」來減輕受損害者之舉證責任(burden of proof)。受損害者(不論是個人、企業或組織)若能證明人工智慧系統因過失或不遵守法規要求之義務,致其受有損害(包括基本權利在內之生命、健康、財產或隱私等),並且該損害與人工智慧系統之表現具有因果關係,法院即可推定該過失或不遵守義務之行為造成受損害者之損害。相對的,人工智慧之供應商或開發商等也可提供相關證據證明其過失不可能造成損害,或該損害係由其他原因所致,以推翻該損害之推定。(二)證據揭露機制(disclosure of evidence mechanism):若受害者之損害涉及高風險人工智慧時,得要求自該供應商或開發商等處獲取證據之權利。受害者透過證據揭露機制能夠較容易地尋求法律賠償,並得以找出究責的對象。 歐盟執委會認為以安全為導向的《人工智慧法》,為人工智慧訂定橫向規則,旨在降低風險和防止損害,但仍需要《人工智慧責任指令》之責任規定,以確保損害風險出現時,相關賠償得以被實現。但歐盟執委會仍選擇了較小的干預手段,《人工智慧責任指令》針對過失之責任制度進行改革,並未採取舉證責任倒置(a reversal of the burden of proof)之作法,而是透過「可推翻之推定」,一方面減輕受損害者之舉證責任,使受損害者得對影響人工智慧系統並產生過失或侵害行為之人提出損害賠償;另一方面賦予人工智慧之供應商或開發商等有機會推翻前揭造成損害之推定,以避免人工智慧系統之供應商或開發商面臨更高的責任風險,可能阻礙人工智慧產品和服務創新。
美國交通部提出自駕車全面性計畫,以促進自動駕駛系統規範環境之整合、透明性與現代化美國聯邦運輸部(US Department of Transportation)於2021年1月11日發布「自駕車全面性計畫(Automated Vehicles Comprehensive Plan, AVCP)」,建立了交通部促進合作、透明性與管制環境現代化,並將自動駕駛系統(Automated Driving Systems)安全整合入交通系統之策略。基於過去「自駕車政策4.0」建立之原則上,自駕車全面性計畫定義了三個目標以達成其願景: 促進合作與透明性:交通部將會促進其合作單位與利益相關人可取得清楚且可靠之資訊,包含自駕系統的能力與限制。 使管制環境現代化:交通部將會現代化相關規範並移除對創新車輛設計、特性與運作模組之不必要障礙,並發展專注於安全性之框架與工作以評估自駕車技術的安全表現。 運輸系統之整備:交通部將會與利害相關人合作實施安全的評估與整合自駕系統於運輸系統之基礎研究與行動,並促進安全性、效率與可取得性。 政策文件中也就相關目標提出了關鍵目的以及行動,包含先前交通部所提出的「自駕系統安全性框架(Framework for Automated Driving System Safety)」草案,將透過建立框架定義、評估並提供自駕系統的安全性需求,並同時保留創新發展之彈性;另外此政策文件也提出了如何將自駕系統融合現有技術應用之實際案例。交通部將會定期的檢視相關行動與計畫,以反應技術與產業發展,並減少重複性之行動,並將資源投注於重要領域。
「自動駕駛車(self-driving car)」可否合法上路?「自動駕駛車(self-driving car)」一般而言係指於汽車安裝感測器(sensors)以及軟體以偵測行人、腳踏車騎士以及其他動力交通工具,透過控制系統將感測到的資料轉換成導航道路,並以安全適當的方式行駛。其目前可分為兩類:「全自動駕駛車(full autonomous)」以及「半自動駕駛車(fully autonomous)」,全自動駕駛車係指可於指定地點出發後不需駕駛人(driver)在車上而到達目的地者之謂。全自動駕駛車又可為「用戶操作(user-operated)」與「無人駕駛車(driverless car)」。 目前包含賓士(Mercedes)、BMW、特斯拉(Tesla)等公司均預期於不久將來會發布一些具備自動駕駛特徵的車種,科技公司如Google亦對於自動駕駛車的科技研發不留餘力。 而從2012年開始,美國有17州以及哥倫比亞特區便開始在討論允許自動駕駛車上路的相關法規,而只有加利福尼亞州(California)、佛羅里達州(Florida)、內達華州(Nevada)及華盛頓哥倫比亞特區(Washington, D.C.)有相關法律的施行,其他州則尚未表態。而大部分的州傾向認為應由人類來操控(operating)汽車,但對於具體上到底有多少比例之汽車任務需由人類操控而多少比例可交由機器則尚有模糊空間。而是否肯認「人工智慧操控」符合法規之「人類操控」亦不明朗。不過在法律存有這樣灰色地帶時刻,Google搶先於加利福尼亞州進行測試其自動控制系統,期望之後於自動駕駛車逐漸上市普及後能搶占商機。
歐盟啟動2030年提升建築能源效率合作創新研究為有效達成「歐洲2020策略」以及「歐洲2050減碳」等政策目標,由歐盟所補助設立的歐洲建築科技平台(European Construction Technology Platform, ECTP) 其下能源效率建築協會(Energy Efficient Buildings Association, E2BA),於今年度 (2012) 7月份正式對外發布首份創新研究報告「前瞻建築能源效率之研究–創新及公私部門合作」(Energy-efficient Buildings PPP beyond 2013)。該研究報告開宗明義指出,將規劃於2030年透過創新模式,及公私部門合作之落實,建立一個創新高科技能源效率產業,達到建築物碳中和(Carbon Neutral)、提昇產業技術、創造新工作機會以及落實智慧城市計畫等目標。 本研究報告係從「市場」(Market)的角度出發,嘗試提出具可行性之商業模型(Business model),供決策者參考。有鑒於建築產業在能源消耗及碳排放量占有很大的比例,該報告即指出對於既有建築物翻新與整修之急迫性,也認為應該透過政府部門介入,推動相關措施,並導引民間持續落實。其次,於產業評估效益方面,該報告明確指出,透過提昇建築能源效率,將創造許多新的就業機會,帶動地方經濟發展。綜上,歸納二點供參考,第一,為達成長期能源效率提升之目標,公部門將寄出管制手段並設置公共基金(Public funding),以防止產業市場失靈,有其必要性;第二,產業等實務運用契約型態將歷經質變,長期性的節能績效保證契約(Long-term energy performance guaranteed contract)將被越來越常被引用。 適逢歐洲議會通過能源效率指令(Energy Efficiency Directive),指令中第四條係針對公有建築物翻新之規範條款,對此歐盟會員國已陸續檢討各自國內推動現況,但目前各國仍面對許多問題及挑戰,例如既有建築物翻新整修,一直無法有效提昇件數,以及投入資金過於龐大等等因素,除非政府展現積極介入的決心,支持及並投入資金協助推動,否則成效仍可能維持停滯不前的困,相關趨勢發展值得後續觀察。