從新一期發布之強化農業生產基礎計畫談日本智慧農業推動策略
資訊工業策進會科技法律研究所
劉宥妤 副法律研究員
2020年11月13日
壹、日本內閣推動智慧農業政策之演進
日本內閣推動智慧農業相關政策,促使農林漁畜業及地方發展,首現於2013年「農林水產業地域活力創造計畫」(以下簡稱活力創造計畫)[1],計畫指出日本預計透過活用機器人技術與農業ICT(資通訊技術),實現超省力、高品質生產的新農業,設置研究會以規劃智慧農業未來藍圖、確保機器人技術安全性政策等,促進高等栽培技術知識外顯化,推動開發生產管理與農業經營指導等系統。活力創造計畫係由日本內閣設置之農林水產業地域活力創造本部[2](以下簡稱活力創造本部)發布,活力創造本部由內閣首相擔任本部長,內閣官房長官、農林水產大臣擔任副本部長以及相關閣僚參與。
日本政府隨後於2016年、2019年發布「農業競爭力強化計畫」與「農業生產基礎強化計畫」,這些計畫與智慧農業推動也都息息相關。此揭係針對該時期農業領域待解決之議題提出相對應的強化政策,並將這些計畫統整歸納進活力創造計畫,做為推動農業整體性發展之政府最高指標。
2016 年 11 月29日活力創造本部公布「農業競爭力強化計畫」,主要目的為整備農業經營環境,使農民得以自由展開經營的環境,同時解決僅靠農民努力無法解決的結構性問題。計畫分為四個面向,包括:一、整頓農業上下游產業;、改善人力與土地;三、引進保險互助制度;四、改革酪農業[3],公布該計畫的同時,將該計畫納入活力創造計畫並公布改訂版的活力創造計畫[4],做為農業競爭力再強化改革之項目。與智慧農業推動相關項目可見於(1)「二、改善人力與土地」面向,促進開發活用ICT遠距離監視水田之低成本水資源管理系統,以構築地區水資源管理模式;(2)「四、改革酪農業」面向,為達到穩定配方飼料價格、強化肉牛生產基礎之目標,推動活用 ICT 減輕勞動負擔、提高生產力以及推動擴大生產規模。
活力創造本部於去(2019)年12月10日公布「農業生產基礎強化計畫」[5]政策,同時公布已納入該計畫的改定版活力創造計畫,旨在加強生產基礎,以加速轉型為進攻型農業,安倍首相同日表示將持續擴大向全球推廣安全、可靠的日本農產品,日本政府透過利用先進技術和促進智慧農業發展,以擴大農產品出口,並決定將鼓勵外國放寬農產品進口限制列為政策方針。財政年度預算追加約3,200億日元(約883億台幣)作為農業措施,利用該預算加強生產基礎,擴大農產品出口量以及鼓勵年輕人參與農業。政策重點之一即為智慧農業落地利用與推動數位政策,包括至2022年無人機噴灑農藥擴大至100萬公頃、至2025年實踐大多數主要從農者能活用數據之農業[6]。
貳、農業生產基礎強化計畫—智慧農業落地實用與數位政策推動
農業生產基礎強化計畫預計藉由強化農業生產基礎,以因應國民必要糧食安定供給、提升糧食自給率、從農者不足農地減少、頻繁發生之自然災害與家畜傳染病、農產品貿易國際環境變化等議題。
計畫構成共11項:1.設立促進農產輸出之指揮總部以更擴大輸出、2.擴大肉用牛・酪農生產方案、3.對應新需求之園藝作物生產體制強化、4.水田農業種植作物轉換為高收益作物、 5.智慧農業落地實用與數位政策推動、6.促進農林水產業之新就業者擴大加入與穩定就業、7.包含梯田等中山間地域[7]之基礎建設整備與活性化、8.強化與食品產業、供應商企業等合作、9.得以對應人手不足之食品流通合理化、10.強化對應極端化自然災害、11.強化豬瘟(Classical Swine Fever,CSF)、非洲豬瘟(African Swine Fever,ASF)等家畜疾病對策。
其中「5.智慧農林漁業的落地實用以及數位政策的推動」內容包括:大力推動活用無人機、IoT、AI等智慧化技術於農林漁業現場落地實用之同時,檢視以數位技術為前提之政策方法,推動農業數位轉型(農業Digital Transformation,農業DX[8]),細項如下所列。
1.加速智慧農業技術落地實施
(1)關於智慧農業實證,包括以果樹、加工用及商用的蔬菜、畜產等需要進一步實證之項目為中心擴大進行,設定優先採選範圍,於災區與中山區地域推廣實證。
(2)促進創造出能夠提供低成本智慧農業技術的新服務(例如共享服務等),有助於加速化智慧農業的落地實施。
(3)由於利用無人機噴灑農藥之方式的快速普及,至2022年度的噴灑面積將擴大到100萬公頃。
(4)為邁向智慧農業的持續性發展,制定地方型戰略,檢討於農業生產現場導入智慧農業機器時確保安全性之措施,促進智慧農業教育、活用農業數據協作平台(WAGRI[9]),維護整備資訊網際網絡環境等綜合性地推動。
(5)為推動農林漁產業領域的創新,例如農林漁產業的完全自動化與無人化,推動具有挑戰性中長期之研究與開發。
(6)透過森林資源數位化與活用ICT,推動智慧林業技術的落地實施,促進木質特性新素材的開發與實證。
(7)漁業產品從生產到流通等各種情況下所取得之數據,建構讓該數據得以相容、共有、活用的數據協作平台。
(8)通過以上的配套措施與努力,至2025年實現大多數主要從農者能實踐活用數據之農業。
2.實現農業數位轉型(農業Digital Transformation,簡稱農業DX)
(1)建構農林水產省共通申請服務(通稱eMaff[10]),農林水產省所有補助金申請在內的行政手續,透過結合ID,從民間私人服務擷取必要資訊等方式,創造得以電子化的環境。
(2)依據不同制度個別管理的農地相關數據,透過活用電子地圖和農林水產省共通申請服務,將開放資料(OPEN DATA)化之每筆「農地區劃[11]」及其關聯資訊集中統一,創造得以有效管理和有效利用的環境。
(3)促進農業者與行政體系所使用之數據項目標準化,提高數據的相互運用性,並有效地掌握和分析資訊。
(4)農業者傾向智慧手機應用程序(MAFF應用程序[12])將於2020年4月正式營運,結合共通申請服務,根據個別農業者的特性、喜好,提供經營農業、政策資訊。
參、結語
日本內閣推動智慧農業政策,從2013年活力創造計畫,初期設立研究會以規劃智慧農業藍圖等宣示性政策,至2016年農業競爭力強化計畫,具體指出單點性智慧農業技術發展目標。演變至2019年農業生產基礎強化計畫,不同於以往散落在各個章節,僅將智慧農業技術做為其他發展目標的強化方式之一,例如利用智慧農業機械或農業ICT做為手段來達到改善土地的主要目標,於2019年計畫中,首度擬定智慧農業專章,不僅明確喊出「2025年實踐大多數主要從農者能活用數據之農業」做為目標,更聚焦強化智慧農業生產基礎,包括活用農業數據協作平台(WAGRI)、農林漁產業的完全自動化與無人化等,再加上實現農業數位轉型政策,觀察上述政策演進,無一不重視數據活用,普及智農技術、標準化數據規格、數據智財管理,成為發展智慧農業之核心基礎。
[1]陳建宏,〈日本「農林水產業、地域活力創造計畫」概要〉,https://www.coa.gov.tw/redirect_files.php?link=mLZJwrpRJ7lxDTde1lsFvObETU2Iq3jbmF99hWT6DgWGEqualWGEqualWGPlusRFYWGSlash0wK9PdunMMQRpcHLfmXJnjgLFrbeJ1OYF9CHQyN&file_name=jRgEdDwWGEqualWGEqual2SY8WGPlusd8qWB0p6wQ (最後瀏覽日:2020/03/24);
農林水產省,〈「農林水産業・地域の活力創造プラン」の改訂について(概要)〉,http://www.maff.go.jp/j/kanbo/katsuryoku_plan/attach/pdf/index-7.pdf(最後瀏覽日:2020/11/13)。
[2]農林水產省,〈農林水産業・地域の活力創造プラン〉,http://www.maff.go.jp/j/kanbo/katsuryoku_plan/index.html#plan201806(最後瀏覽日:2020/11/13);
[3]鄭柏彥、留程鴻、蔡綾容,〈日本農業競爭力強化計畫介紹(上)(下) 〉,財團法人台灣綜合研究院;農林水產省,〈農業競争力強化プログラム〉,https://www.maff.go.jp/j/kanbo/nougyo_kyousou_ryoku/(最後瀏覽日:2020/11/13)。
[4]農林水產省,〈「農林水産業・地域の活力創造プラン」の改訂について〉, https://www.maff.go.jp/j/kanbo/nougyo_kyousou_ryoku/attach/pdf/nougyo_kyoso_ryoku-10.pdf(最後瀏覽日:2020/11/13);農林水產省,〈農林水産業・地域の活力創造プラン(平成28年11月29日改訂) 〉 ;https://www.maff.go.jp/j/kanbo/nougyo_kyousou_ryoku/attach/pdf/nougyo_kyoso_ryoku-5.pdf(最後瀏覽日:2020/11/13)。
[5]農林水産業・地域の活力創造本部,〈農林水産業・地域の活力創造プラン 令和元年12月10日改訂〉,http://www.kantei.go.jp/jp/singi/nousui/dai26/siryou3.pdf(最後瀏覽日:2020/11/13);農林水產省,〈農業生産基盤強化プログラム〉, https://www.maff.go.jp/j/council/seisaku/kikaku/bukai/attach/pdf/kikaku_1223-2.pdf(最後瀏覽日:2020/11/13)。
[6]〈農林水産業・地域の活力創造本部(第26回)議事次第-令和元年12月10日〉,首相官邸網站,http://www.kantei.go.jp/jp/singi/nousui/dai26/gijisidai.html(最後瀏覽日:2020/11/13);日本農民新聞社,〈農林水産業・地域の活力創造プランを改訂=政府〉,2019/12/12,https://agripress.co.jp/archives/4024;農業協同組合新聞,〈水田農業で高収益産地 500創設-政府の生産基盤強化策〉,2019/12/17,https://www.jacom.or.jp/nousei/news/2019/12/191217-39916.php(最後瀏覽日:2020/11/13)。
[7]農林水產省將農業用地分成四種類型,都市的地域、平地農業地域、中間農業地域、山間農業地域,後兩者合稱為中山間地域,係指從平原的外緣至山間地的區域。Wikipedia,〈中山間地域〉,https://ja.wikipedia.org/wiki/%E4%B8%AD%E5%B1%B1%E9%96%93%E5%9C%B0%E5%9F%9F(最後瀏覽日:2020/11/13)。
[8]デジタルトランスフォーメーション(Digital transformation,簡稱DX),https://ja.wikipedia.org/wiki/デジタルトランスフォーメーション、https://en.wikipedia.org/wiki/Digital_transformation(最後瀏覽日:2020/11/13)。
[9]WAGRI代表的是作為一數據平台 ,由各式的數據與服務連環成一個輪,調和各個社群、促進「和」諧,期待引領農業領域之創新,由WA+AGRI組合而成(WA是和的日文+農業AGRI),WAGRI平台網站,https://wagri.net/ja-jp/(最後瀏覽日:2020/11/13)。
[10]農林水產省(Ministry of Agriculture, Forestry and Fisheries,簡稱MAFF)。
[11]為便於農地管理而分級劃分的區域。
[12]MAFF應用程序為暫稱,僅為初步規劃還未定案。
根據美國公共電視台在2016年1月6日的新聞,指出生物支付將可能成為新興支付工具。生物支付之定義為利用生物辨識(biometric)技術驗證個人生物特徵,諸如:指紋、虹膜等進行支付。採用生物支付技術,未來將無須使用信用卡或行動裝置,僅需要個人生物特徵之辨識即可完成交易。此轉變將使未來交易更加快速、便利,但同時,生物支付的安全性卻也不無疑義。 即便生物辨識屬於高層級的資訊安全保護機制,但水能載舟,亦能覆舟。生物辨識利用生物不可變之特性進行身分識別,涉及高度個人隱私,為妥善保護個人資訊安全,需訂立生物辨識相關規範加以管制,否則將衍生許多法律問題。 例如:在2015年6月,美國線上出版商Shutterfly公司被控訴違法蒐集個人資料。原告稱其並非Shutterfly公司之註冊使用者,也從未同意其生物辨識資訊被該公司蒐集,但其面紋(Face print)卻被上傳至該公司網站,並標註姓名,儲存在自動針對相片標記臉部辨識系統之資料庫。 依據BIPA針對生物辨識定義及蒐集規範: 1.第10條: 生物辨識之態樣,包含視網膜、虹膜掃描、指紋或是手部、臉部外觀之掃描,但不包括簽名、照片、用於科學檢測之人體樣本、頭髮顏色等。 2.第15條(a): 規定公司蒐集個人生物特徵資訊應有相關規範供公眾查閱,並應提供生物辨識資訊之保管及銷毀日期及相關資訊。 3.第15條(b)(1): 蒐集生物辨識資訊應告知當事人。 Shutterfly公司提出要求法院不受理之抗辯,主張BIPA規定之臉部外觀,其文意解釋應為物理上個人親自接受掃描所得之資訊,並非原告所主張以照片辨識之臉部外觀,但法院認為Shutterfly之主張並不合理,因此同意受理此案。 觀察該案可發現,儘管生物辨識提高資訊安全之保護,但相關法規範解釋仍待實務完備。另一方面,生物特徵資訊極易被他人蒐集,因此,如何建置蒐集個人辨識資訊及完善相關措施,也是推行生物支付措施所需突破的關口。
日本IPA/SEC公佈「IoT高信賴化機能編」指導手冊日本獨立行政法人情報處理推進機構(IPA/SEC)於2016年3月公佈「聯繫世界之開發指引」,並於2017年5月8日推出「IoT高信賴化機能編」指導手冊,具體描述上開指引中有關技術面之部份,並羅列開發IoT機器、系統時所需之安全元件與機能。該手冊分為兩大部份,第一部份為開發安全的IoT機器和關聯系統所應具備之安全元件與機能,除定義何謂「IoT高信賴化機能」外,亦從維修、運用角度出發,整理開發者在設計階段須考慮之系統元件,並依照開始、預防、檢查、回復、結束等五大項目進行分類。第二部份則列出五個在IoT領域進行系統連接之案例,如車輛和住宅IoT系統的連接、住家內IoT機器之連接、產業用機器人與電力管理系統之連接等,並介紹案例中可能產生的風險,以及對應該風險之機能。IPA/SEC希望上開指引能夠作為日後國際間制定IoT國際標準的參考資料。
歐盟執委會通過關於《人工智慧責任指令》之立法提案歐盟執委會(European Commission)於2022年9月28日通過《人工智慧責任指令》(AI Liability Directive)之立法提案,以補充2021年4月通過之《人工智慧法》草案(Artificial Intelligence Act)。鑑於人工智慧產品之不透明性、複雜性且具自主行為等多項特徵,受損害者往往難以舉證並獲得因人工智慧所造成之損害賠償,《人工智慧責任指令》立法提案即為促使因人工智慧而受有損害者,得以更容易獲得賠償,並減輕受損害者請求損害賠償之舉證責任。 《人工智慧責任指令》透過引入兩個主要方式:(一)可推翻之推定(rebuttable presumptions):人工智慧責任指令透過「因果關係推定(presumption of causality)」來減輕受損害者之舉證責任(burden of proof)。受損害者(不論是個人、企業或組織)若能證明人工智慧系統因過失或不遵守法規要求之義務,致其受有損害(包括基本權利在內之生命、健康、財產或隱私等),並且該損害與人工智慧系統之表現具有因果關係,法院即可推定該過失或不遵守義務之行為造成受損害者之損害。相對的,人工智慧之供應商或開發商等也可提供相關證據證明其過失不可能造成損害,或該損害係由其他原因所致,以推翻該損害之推定。(二)證據揭露機制(disclosure of evidence mechanism):若受害者之損害涉及高風險人工智慧時,得要求自該供應商或開發商等處獲取證據之權利。受害者透過證據揭露機制能夠較容易地尋求法律賠償,並得以找出究責的對象。 歐盟執委會認為以安全為導向的《人工智慧法》,為人工智慧訂定橫向規則,旨在降低風險和防止損害,但仍需要《人工智慧責任指令》之責任規定,以確保損害風險出現時,相關賠償得以被實現。但歐盟執委會仍選擇了較小的干預手段,《人工智慧責任指令》針對過失之責任制度進行改革,並未採取舉證責任倒置(a reversal of the burden of proof)之作法,而是透過「可推翻之推定」,一方面減輕受損害者之舉證責任,使受損害者得對影響人工智慧系統並產生過失或侵害行為之人提出損害賠償;另一方面賦予人工智慧之供應商或開發商等有機會推翻前揭造成損害之推定,以避免人工智慧系統之供應商或開發商面臨更高的責任風險,可能阻礙人工智慧產品和服務創新。
歐盟發布《個資侵害通知範例指引》說明個資侵害案例解析以利個資事故因應歐洲資料保護委員會(European Data Protection Board, EDPB)於2021年1月18日發布《個資侵害通知範例指引》(Guidelines 01/2021 on Examples regarding Data Breach Notification)草案,並進行為期六週之公眾諮詢。該指引針對2017年10月所發布之《個資侵害通知指引》(Guidelines on Personal data breach notification under Regulation 2016/679)透過案例分析進行補充說明,對於資料控制者如何識別侵害類別以及評估風險提出更詳細的實務建議,協助資料控制者處理資料外洩及風險評估考量因素之認定。 個資侵害係指違反安全性規定而導致傳輸、儲存或以其他方式處理之個資,遭意外或非法破壞、遺失、變更、未獲授權之揭露或近用之情形,由於個資事故將對資料主體可能造成重大不利影響,該指引首先要求資料控制者進行侵害類別之辨識,依據2017年指引將個資侵害分為機密性侵害(confidentiality breach)、完整性侵害(integrity breach)以及可用性侵害(availability breach)。而資料控制者最重要的義務在於主動識別系統漏洞,評估侵害對資料主體權利所產生之風險,制定適當計畫及程序採取適當因應措施,確定侵害事件之問題根因及安全漏洞,加強員工認知培訓及制定操作手冊,並確實記錄各項侵害行為,以提升個資事故因應效率及降低時間延誤。 此外,該指引彙整自GDPR實施以來個資侵害通知具體案例,分為勒索軟體攻擊、資料外洩攻擊、內部人為風險、硬體設備或紙本檔案失竊、誤發郵件以及電子郵件內容外洩,共六大主題十八件案例,針對不同程度風險提供最典型的正確及錯誤作法,並提出資料控制者有關預防潛在攻擊及減輕影響之措施建議。