美國司法部(United States Department of Justice)與11個州檢察總長2020年10月20日於哥倫比亞特區地方法院聯合向Google提起反托拉斯民事訴訟,依據《休曼法》(Sherman Act)第2條,以「非法利用優勢地位進行排他行為,強化自身市場力量」為由起訴 Google。美國司法部認為,Google利用自身在電子數位設備提供搜尋服務和搜尋廣告市場(search advertising markets)的壟斷地位,損害競爭對手和消費者利益,並利用特殊協議和商業慣例,佔據美國九成以上的搜尋市場,在網頁瀏覽器和手機搜索領域建立難以被超越的商業優勢。Google的反競爭策略(anticompetitive tactics)讓它能維持甚或擴大壟斷地位,削弱競爭並扼殺創新。
美國司法部與阿肯色州、佛羅里達州、喬治亞州等11個州聯合提出訴訟,指稱Google達成一系列的排他性協議(exclusionary agreements),要求將Google設置為數十億用戶之手持行動裝置或電腦的預設搜尋引擎,並且在許多情況下禁止預先安裝(preinstallation)競爭對手軟體。起訴書指稱Google透過以下方式違法維護搜尋和搜尋廣告的壟斷地位:(1)簽訂排他性協議,禁止預先安裝任何競爭對手的搜尋服務;(2)無視消費者意願,包裹式(tying)安排強迫Google搜尋軟體APP需預先安裝在行動設備的主要位置,且不可刪除;(3)與Apple達成長期協議,將Google作為Safari瀏覽器或其他搜尋工具的預設搜尋引擎(但實際上是獨家搜尋引擎);(4)利用自身獨占優勢和利潤,給予設備商、網頁瀏覽器業者和其他搜尋工具業者更多的優惠待遇,創造無間斷的強化獨占循環。
司法部認為,Google的反競爭措施阻止其它競爭對手達到經營規模,進而消除美國大多數搜尋查詢的競爭。也因為限制競爭,Google得以降低搜尋品質(例如引起隱私、資料保護、和消費者利用爭議等),從而損害消費者並阻礙創新;此外Google可以向廣告客戶收取高於市場價格之費用,並降低客戶服務品質。
而面對美國司法部控訴,Google表示這些指控具有「嚴重瑕疵」(deeply flawed),消費者選擇Google並非被強迫,而是因為Google是最優秀的搜尋工具。蘋果的Safari瀏覽器預設使用Google搜尋,是因為蘋果公司認可Google搜尋的品質,且競爭對手(Bing和Yahoo!)亦以付費方式出現在Safari介面可供消費者選擇。而微軟在Windows設備上預載之Edge瀏覽器,是以Bing為預設搜尋工具。此外,Google和Android營運商和設備商簽訂促銷協議以推廣Google,該協議可以直接降低手機價格;但即使簽署協議,Android仍會預載其他競爭者的APP和APP Store。是故,Google認為司法部若勝訴,將讓消費者只能用品質較差的搜尋工具以及支付更高的手機價格。
本文為「經濟部產業技術司科技專案成果」
美國聯邦貿易委員會(Federal Trade Commission, FTC)於2014年間以路由器(Router)與雲端服務的安全漏洞,導生消費者面臨資安與隱私風險之虞,而依據《聯邦貿易委員會法》第5條(Federal Trade Commission Act, 15 U.S.C. § 45(a))委員會防止不公平競爭違法手段(unfair methods of competition unlawful ; prevention by Commission)之規定,即華碩涉嫌行使不公平或詐欺的手段致影響商業活動之公平競爭為由,對我國知名全球科技公司華碩電腦股份有限公司(ASUSTeK Computer, Inc.)進行起訴 。 本案歷經FTC近二年的調查程序後,華碩公司於2016年2月23日同意FTC的和解條件,即華碩公司應針對部分存在資安疑慮的產品依計畫進行改善,並且於未來20年期間內須接受FTC的獨立稽核(independent audits)。 FTC於該案的起訴報告中指出,華碩於銷售其所生產的路由器產品時,曾對消費者強調該產品具許多資安保障措施,具有得以防止使用者不受駭客攻擊等效果;然而,該產品實際上卻具有嚴重的軟體設計漏洞,使駭客得以在使用者未知的情況下,利用華碩路由器的網頁控制面板(web-based control panel)之設計漏洞,任意改變路由器的安全設定;更有專家發現駭客於入侵華碩製造之路由器產品後,得以強佔使用者的網路頻寬。 此外,華碩允許使用者沿用路由器產品的預設帳號密碼,再加上華碩所提供的AiCloud與AiDisk雲端服務功能,讓使用者得以隨身硬碟建立其私有的雲端儲存空間,使得駭客得藉由上述華碩路由器的設計漏洞直接竊取使用者於隨身硬碟內所儲存的資料。FTC並於起訴聲明中指出,駭客利用華碩路由器產品與相關服務的漏洞,於2014年間成功入侵超過12,900多位產品使用者的雲端儲存空間。除此之外,使華碩更加備受譴責的是,當該漏洞被發現之後,其並未主動向產品的使用者強調產品存在該資安問題,更未告知使用者應下載更正該設計漏洞的軟體更新,因此FTC始決定對華碩進行起訴。
美國FDA發布「醫療器材單一識別碼系統」規則草案美國推動醫療器材「單一識別」(Unique Device Identification, UDI)系統已行之有年,藉由建立UDI系統,強化醫療器材錯誤回報(Adverse Event Report)以及上市後產品監督(Post-Market Surveillance)等相關資訊的流通,以保障病人的安全。2007年由美國國會所通過的《食品藥物管理法修正案》(Food and Drug Administration Amendments Act of 2007, FDAAA)第226項,修正《食品、藥物及化妝品法》(Federal Food, Drug, and Cosmetic Act , FD&C Act)新增第519項f款,提供美國食品藥物管理局(U.S. Food and Drug Administration, FDA)訂定「醫療器材單一識別系統」法規之法源基礎。另一方面,在美國國會的要求之下,FDA於2012年7月3日正式發布「醫療器材單一識別碼系統」規則草案,進行公眾預告與評論(Notice and Comment)程序。 FDA長期收集醫療器材產業、醫療社群、病人與消費者,以及產業專家之建議,而將這些建議呈現在規則草案內容中,目的在於減少廠商成本,並順利建置UDI系統,是故草案內容實採取某些公司實際使用的標準與系統經驗。FDA所發布的規則草案重點如下: 1.「單一識別碼」將分為「器材識別碼」(Device Identifier),包含特定器材的單一識別;「生產識別碼」(Production Identifier),包含器材的生產資訊。 2.將採取區分醫療器材風險程度之高低作為標準,分階段置入高風險的醫療器材的「單一識別碼系統」;低風險的醫療器材將有條件在部分或全部的規則中例外免除。 3.免除零售的非處方(Over the Counter)醫療器材適用此規範,係因這些器材尚有統一商品條碼(Universal Product Code, UPC)作為識別。 FDA宣稱,隨著系統的建置與規範的制定,絕大多數的醫療器材將必須具有統一的日期標準,包含標籤上的到期日;亦必須使UDI能夠容易閱讀,且能為系統自動識別與應用資料擷取技術,進一步成為全球UDI資料庫建置的標準。我國目前雖尚無UDI系統的相關法規範,但產業與主管機關已就相關議題進行討論,而FDA所發佈的規則草案之發展歷程,即可作為相關單位在制定法規之參考,藉此瞭解先進國家在此議題之發展,提早與先進國家之標準做接軌。
合成資料(synthetic data)「合成資料」(synthetic data)的出現,是為了保護原始資料所可能帶有的隱私資料或機敏資料,或是因法規或現實之限制而無法取得或利用研究所需資料的情況下,透過統計學方法、深度學習、或自然語言處理等方式,讓電腦以「模擬」方式生成研究所需之「合成資料」並進行後續研究跟利用,透過這個方法,資料科學家可以在無侵犯隱私的疑慮下,使合成資料所訓練出來的分類模型(classifiers)不會比原始資料所訓練出來的分類模型差。 在合成資料的生成技術當中,最熱門的研究為運用「生成對抗網路」(Generative Adversarial Network, GAN)形成合成資料(亦有其他生成合成資料之方法),生成對抗網路透過兩組類神經網路「生成網路」(generator)與辨識網路(discriminator)對於不同真偽目標值之反覆交錯訓練之結果,使其中一組類神經網路可生成與原始資料極度近似但又不完全一樣之資料,也就是具高度複雜性與擬真性而可供研究運用之「合成資料」。 英國國防科技實驗室(Defense Science and Technology Laboratory, DSTL)於2020年8月12日發布「合成資料」技術報告,此技術報告為DSTL委託英國航太系統公司(BAE Systems)的應用智慧實驗室(Applied Intelligence Labs, AI Labs)執行「後勤科技調查」(Logistics Technology Investigations, LTI)計畫下「資料科學與分析」主題的工作項目之一,探討在隱私考量下(privacy-preserving)「合成資料」當今技術發展情形,並提供評估技術之標準與方法。 技術報告中指出,資料的種類多元且面向廣泛,包含數字、分類資訊、文字與地理空間資訊等,針對不同資料種類所適用之生成技術均有所不同,也因此對於以監督式學習、非監督式學習或是統計學方法生成之「合成資料」需要採取不同的質化或量化方式進行技術評估;報告指出,目前尚未有一種可通用不同種類資料的合成資料生成技術或技術評估方法,建議應配合研究資料種類選取合適的生成技術與評估方法。