英國最高法院於2020年8月26日,駁回華為與中興通訊在Unwired Planet v Huawei和Conversant v Huawei and ZTE案的上訴決定。美國公司Unwired Planet和Conversant控訴華為及其他智慧手機製造商,侵害其所擁有的英國專利技術,其中包含由國際標準制定組織(Standard Setting Organization, SSO)與歐洲電信標準協會(European Telecommunications Standards Institute, ETSI)所制定的2G、3G及4G無線通訊標準必要專利(Standards Essential Patents, SEP)。依據ETSI智慧財產權政策(Intellectual Property Policy, IPR),SEP權利人必須以公平、合理和無歧視條款(Fair, Reasonable and Non-discriminatory, FRAND)向實施者進行授權。英國最高法院根據ETSI政策所制定的契約內容,應賦予英國法院管轄權,更能決定多國專利組合的全球授權條款。若華為拒絕支付法院認定的FRAND全球授權金,法院將會頒布禁制令,禁止華為在英國銷售侵權產品。
首先,關於本案管轄權爭議,最高法院認為,在沒有雙方協議管轄的情況下,英國法院具有本案管轄權,得發給禁制令並確定專利授權費率等授權條件。原則上,專利有效性與侵權爭議,應由授予專利的該國法院決定,然而本案依據ETSI智慧財產權政策所訂定的契約,已約定由英國法院管轄,並得決定包括外國專利在內的專利組合授權條款。
另外,本案關於FRAND無歧視爭議,係源於華為主張Unwired Planet先前給予Samsung較低的授權費率,對華為構成歧視性授權。最高法院認為,Unwired Planet未違反FRAND無歧視承諾,蓋依據ETSI智慧財產權政策,FRAND無歧視並非硬性(hard-edged)要求前後授權費率完全一致,而是指所有市場參與者,基於專利組合的市場價值,都能取得專利授權使用的合理權利金價格表,絕非強制SEP所有人對類似條件的被授權人提供相同的授權條件。本案法院也認同,基於經濟或商業實務上的習慣,調整個別授權金,並未違反ETSI智慧財產權政策的無歧視要求。
本文為「經濟部產業技術司科技專案成果」
日本內閣府於2021年1月20日發布「第6期科學技術與創新基本計畫」(科学技術・イノベーション基本計画,以下稱第6期科技創新基本計畫)草案,並自即日起至同年2月10日,對外徵求公眾意見。依2020年6月修正通過之日本科學技術與創新基本法(科学技術・イノベーション基本法,預定2021年正式公告施行)第12條規定,要求政府應就振興科學技術與創新創造的政策,擬定基本計畫並適時檢討調整,同時對外公告。而本次草案的提出,便為因應現行的第5期科學技術基本計畫即將屆期,啟動擬定下一期基本計畫。 依草案內容,第6期科技創新基本計畫延續Society5.0的願景,並以數位化及數位科技作為發展核心。但檢視至今的科技創新政策成效,數位化進程不如政策目標所預期;受COVID-19疫情影響,也提升了科技普及化應用的重要性。另一方面,科學技術基本法的修正,則揭示了人文社會科學與自然科學跨域融合運用的方向,並期待藉由創新創造納為立法目的,實現進一步的價值創造。基此,第6期科技創新基本計畫提出,應從強化創新、研究能量及確保人才與資金的三方向為主軸,結合SDGs、數位化、資料驅動及日本共通在地價值,建構出「日本模型」(Japan Model)作為實現Society5.0的框架。 針對如何強化創新能力、研究能量及確保人才與資金,計畫草案提出以下方向: (1)強化創新能力:整體性強化創新生態系(innovation ecosystem),建構具韌性的社會體系,並有計畫地推動具社會應用可能的研發活動。具體作法包含藉由AI與資料促成虛擬空間與現實世界的互動優化、持續縮減碳排放量實現循環經濟、減低自然災害與傳染病流行對經濟社會造成的風險、自社會需求出發推動產業結構走向創新、拓展智慧城市(smart city)的應用地域等。 (2)強化研究能力:鼓勵開放科學與資料驅動型之研究,並強化研究設備、機器等基礎設施的遠端與智慧機能,推動研究體系的數位轉型;以資料驅動型為目標,多元拓展具高附加價值的研究,包含生命科學、環境、能源、海洋、防災等領域;擴張大學的機能,如增進大學的自主性,從經營的角度調整與鬆綁國立大學法人的管理與績效評鑑方式等,用以厚植創新基底。 (3)人才培育及資金循環:目標培養具備應變力與設定議題能力的人才;同時藉由資助前瞻性研發,結合大學的基礎科研成果,激發創新的產出及延伸收益,並回頭挹注於研發,建立研發資金的循環運用體系。
美國明尼亞波利斯市禁止政府部門使用人臉辨識技術美國明尼蘇達州明尼亞波利斯市的市議會鑑於人臉辨識技術有可靠性的疑慮,以及對有色人種有潛在的傷害,該議會於2021年2月12日通過修正《明尼亞波利斯條例》(Minneapolis Code of Ordinances)關於資訊治理(Information Governance)的部分,新條例規定除有例外情形,禁止政府部門採購人臉辨識技術及使用從該技術獲得之資訊。明尼亞波利斯是繼波士頓、舊金山、奧克蘭等,新加入禁用人臉辨識技術的城市。 新條例是由該市市議會議員Steve Fletcher倡議,其指出市民擔心在未得其同意時使用人臉辨識技術進行監視,是否會侵害市民的隱私權。此外,根據研究亦顯示人臉辨識技術仍存在瑕疵,尤其是辨別婦女、兒童和有色人種的錯誤率相當高,而不正確的識別,恐怕讓弱勢者受到更不利的對待。 明尼亞波利斯市以明尼蘇達州《明尼蘇達政府資料應用法》(Minnesota Government Data Practices Act)中所定資料隱私原則,作為制定新條例的基礎,規定在蒐集有關個人資料時應考慮並重視個人隱私,包含僅在具備理由時始得蒐集資訊,並且就蒐集的內容與原因保持透明。再者,新條例要求在市議會設置專門的委員會,市政府應向該委員會提出書面報告,說明新條例遵守的情形,以及追蹤及報告違反的情形及賠償措施。惟隨著技術和情事的變化,政府部門可能有使用人臉辨識技術的需求,就此,新條例規定政府部門需向市議會解釋使用該技術的必要性、說明如何使用該技術及所獲取之資訊、對技術及所獲取之資訊進行監管的計畫,市議會依規定應召開公聽會。若例外情形符合消除歧視、保護隱私、透明與公眾信任的目標,市議會則可同意政府部門使用人臉辨識技術,或要求政府部門修正前述監管計畫,作為市議會同意的條件。
日本先進設備導入計畫獎勵中小企業設備升級日本經濟產業省為協助中小企業更新老舊機器設備,並鼓勵中小企業導入新穎先進設備改善企業生產率,公布「先進設備導入計畫指引」(導入促進指針),於2019年至2021年間授權地方政府訂定先進設備導入計畫(先端設備等導入計画),提出區域內申請計畫的資格、設備定義、計畫目的與財產稅減免額度,以促成地方中小企業對地方特色的貢獻與參與,並改善在地產業環境與結構。 符合資格的中小企業若能在核准計畫年度內,每年勞動生產率提高達3%,可適用財產稅稅率減半或0%之優惠稅率(非免稅)。「先進設備導入計畫指引」亦明確指出,審核通過之計畫仍可進一步適用經濟產業省「中小型製造服務經營支援補助」(ものづくり・商業・サービス経営力向上支援補助金)、「服務業IT應用生產力提升補助」(サービス等生産性向上IT導入支援事業),享有更多的補助金補助。 所稱設備係指任何機械、裝置、備品、建築物附屬設備、軟體,以及電子檢驗或測量儀器。各地方政府訂定計畫時,可依其產業政策進一步限縮範圍。而先進之定義,係指欲購置設備之良率或生產效率,應較所淘汰設備高1%以上。有關新、舊設備之汰換應以同產業、同生產流程者為限,兩者比較之期間為淘汰設備原銷售日期起後10年內。由此可知,先進設備導入計畫的特殊性在於加速中小企業汰舊換新,提高勞動生產率以因應人口高齡化,而與鼓勵企業購買最新、最尖端設備之補助措施有所不同。 此外,為健全地方財政自主,「先進設備導入計畫指引」亦要求各地方政府應說明地方產業、環境或人文特色及先進設備的投資條件,以促進經濟發展與地方產業結構的融合。該指引具體建議包括: 應考量到中小企業導入先進設備提高勞動生產率後,影響當地就業人口需求,以及如何避免企業裁員的機制。 導入之先進設備因運作所產生之噪音、光害、排放污染等環境問題;以及導入之設備是否影響到當地居民生活作息而有侵害公共秩序之虞。 考量到財產稅為地方稅之稅源,應避免過度減免而導致地方財政虧損。
英國發布人工智慧網路資安實務守則英國政府於2025年1月31日發布「人工智慧網路資安實務守則」(Code of Practice for the Cyber Security of AI,以下簡稱「實務守則」),目的是提供人工智慧(AI)系統的網路資安指引。該實務守則為英國參考國際上主要標準、規範後所訂定之自願性指引,以期降低人工智慧所面臨的網路資安風險,並促使人工智慧系統開發者與供應商落實基本的資安措施,以確保人工智慧系統的安性和可靠性。 由於人工智慧系統在功能與運作模式上與傳統網路架構及軟體有明顯的不同,因此產生新的資安風險,主要包含以下: 1. 資料投毒(Data Poisoning):在AI系統的訓練資料中蓄意加入有害或錯誤的資料,影響模型訓練結果,導致人工智慧系統產出錯誤推論或決策。 2. 模型混淆(Model Obfuscation):攻擊者有意識地隱藏或掩飾AI模型的內部運作特徵與行為,以增加系統漏洞、引發混亂或防礙資安管理,可能導致AI系統的安全性與穩定性受損。 3. 輸入間接指令(Indirect Prompt Injection):藉由輸入經精心設計的指令,使人工智慧系統的產出未預期、錯誤或是有害的結果。 為了提升實務守則可操作性,實務守則涵蓋了人工智慧生命週期的各階段,並針對相關角色提出指導。角色界定如下: 1. 人工智慧系統開發者(Developers):負責設計和建立人工智慧系統的個人或組織。 2. 人工智慧系統供應鏈(Supply chain):涵蓋人工智慧系統開發、部署、營運過程中的的所有相關個人和組織。 實務守則希望上述角色能夠參考以下資安原則,以確保人工智慧系統的安全性與可靠性: 1. 風險評估(Risk Assessment):識別、分析和減輕人工智慧系統安全性或功能的潛在威脅的過程。 2. 資料管理(Data management):確保AI系統整個資料生命週期中的資料安全及有效利用,並採取完善管理措施。 3. 模型安全(Model Security):在模型訓練、部署和使用階段,均應符合當時的技術安全標準。 4. 供應鏈安全(Supply chain security):確保AI系統供應鏈中所有利益相關方落實適當的安全措施。 「人工智慧網路資安實務守則」藉由清晰且全面的指導方針,期望各角色能有效落實AI系統安全管控,促進人工智慧技術在網路環境中的安全性與穩健發展。