論科學資料之開放與共享—以美國國家衛生研究院之資料政策為核心

論科學資料之開放與共享—以美國國家衛生研究院之資料政策為核心

資訊工業策進會科技法律研究所
蔡立亭
2020年12月25日

  科學研究以提升全人類之福祉為本,醫療健康研究資料的共享,有助於促進整體科學研究的量能。為促進由政府支持之科學資料與研究發現的近用,美國政府原則上肯定科學之發展與資料之留存、近用相關,資料之公開不僅應遵守法律之限制,尚應注意資料之生命週期,並訂定時限;受政府資助之研究,所產出之資料以免費近用為原則,政府之政策亦應考量國際合作之實際情況[1]。申言之,科學研究資料的近用,有助於提升科學發展,政府於制定共享政策的同時,亦應一併考量國際合作的情況,並以免費近用為原則,研議資料公開策略。

  為增進科學資料的效益,美國國家衛生研究院(National Institutes of Health,簡稱NIH)設置科學政策辦公室(Office of Science Policy,簡稱OSP)制定完整的政策,領域擴及生物安全、基因檢測、基因資料共享、人類受試者保護、NIH的組織與管理,和受NIH資助研究的成果與價值;藉由廣泛的分析與報告,提出新興政策建議[2]。在科學資料共享的層面,NIH聚焦於「基因與健康」和「科學資料管理」,生物醫學研究的進展,取決於科學資料的近用;共享科學資料,有助於驗證研究結果,研究者整合資料以強化分析,提升難以生成資料的再次應用,加速研究進展[3]。NIH藉由資料的管理,促進科學資料的近用,以驗證並共享研究成果。

  為輔助資料之開放共享,NIH公告資料管理與共享政策(NIH Policy for Data Management and Sharing,以下簡稱DMS政策),目的為促進由NIH資助或進行研究的科學資料共享[4]。DMS政策將科學資料定義為:「在科學社群普遍接受記錄事實的素材,研究發現能反覆的驗證,不論該資料是否用以支持學術出版物。科學資料並不包含實驗室筆記、初步分析、完整的個案報告表、科學報告的草稿、未來的研究計畫、同儕評論、與同事的溝通、物理實體,例如實驗室標本[5]。」。換言之,並非僅以該資料是否能佐證學術出版物為科學資料之認定基準,而係以該科學資料是否屬事實之記載,和研究成果能否反覆驗證為判斷。

  另,NIH、NIH研究院、中心、辦公室已有資料預期的共享,如:科學資料的共享、相關標準、資料庫的選擇、時限,適用並於計畫中呈現;若不適用則研究員應在計畫中提出資料共享與管理的方式,NIH並建議資料的管理與共享應實踐FAIR(Findable、Accessible、Interoperable、Reusable)原則,共享的資料類型,首先為一般性的描述、估計在研究中生成或使用的科學資料,次為列出後設資料等有助於解釋科學資料的文件;NIH鼓勵科學資料盡快共享,不遲於資料的出版或執行期間[6]。申言之,即使各該研究計畫不適合既有的共享策略,於計畫提案時,研究團隊仍應研擬適合共享與管理的方式,並以FAIR原則為依準。

  研究團隊提供的科學研究資料,將儲存於由政策或資助方指定的資料庫。NIH提出推薦的資料庫列表[7],並描述理想的儲存資料庫特色為:「具有獨特且永久的識別碼、具有長期持續管理資料的計畫、設置後設資料、整理資料並保證品質、免費並簡易的近用、廣泛且可估計的重複使用、明確的使用指引、安全性與完整性、機密性、共通格式、引用機制,及資料保留策略[8]」。由此觀之,資料庫的設計應易於科學資料的檢索;並在資料的近用上,維護資料之安全、完整、機密等。

  NIH共享資料之實際應用上,為共享基因研究資料,NIH於2014年提出基因資料共享政策(Genomic Data Sharing Policy,以下簡稱GDS政策),包含NIH資助指南與契約;NIH的GDS政策適用於所有NIH資助的研究,生成之大規模人類或非人類之基因資料,將應用於後續的研究[9]。藉此能有效率的推動基因研究向前邁進。

  GDS政策課予研究者提供基因資料的義務;研究者近用基因資料,亦應遵守基於研究使用控制近用資料(Controlled-Access Data)的條款[10]。研究人員受NIH核准後,方能將NIH控制近用的資料,應用於第二次研究(secondary research)[11]。由NIH資料近用委員會(Data Access Committee)審查,研究員近用資料並須遵守基於研究使用控制近用資料的條款[12]。另,基因摘要結果(Genomic Summary Results,以下簡稱GSR)隸屬於NIH政策[13],並依據GDS政策目的,將GSR定義為由研究者提供的摘要統計(summary statistics),非敏感性的資料列入NIH指定的資料庫中[14]。換言之,NIH以對控制近用資料的應用核准,在資料之限制近用與科學發展間,取得平衡。

  為回應COVID-19,加速治療與疫苗的研發,NIH的資料共享與管理政策,緩解全球科學社群開放共享科學資料的需求,該政策並建立資料共享為研究過程的基礎成分[15]。綜上所論,將資料共享內化於研究過程中,有助於全球同步更新研究的進程,共同面對全人類之科學挑戰。

 

 

[1] NATIONAL SCIENCE AND TECHNOLOGY COUNCIL, COMMITTEE ON SCIENCE, SUBCOMMITEE ON INTERNATIONAL ISSUES, INTERAGENCY WORKING GROUP ON OPEN DATA SHARING POLICY, Principles For Promoting Access To Federal Government-Supported Scientific Data And Research Findings Through International Scientific Cooperation (2016), 1, 整理自Principles, at 5-8, https://obamawhitehouse.archives.gov/sites/default/files/microsites/ostp/NSTC/iwgodsp_principles_0.pdf (last visited December 14, 2020).

[2]About Us, Welcome to NIH Office of Science Policy, NIH National Institutes of Health Office of Science Policy, https://osp.od.nih.gov/about-us/ (last visited December 7, 2020).

[3]NIH Data Management and Sharing Activities Related to Public Access and Open Science, NIH National Institutes of Health Office of Science Policy, https://osp.od.nih.gov/scientific-sharing/nih-data-management-and-sharing-activities-related-to-public-access-and-open-science/ (last visited December 10, 2020).

[4]Final NIH Policy for Data Management and Sharing, NIH National Institutes of Health Office of Extramural Research, Office of The Director, National Institutes of Health (OD), https://grants.nih.gov/grants/guide/notice-files/NOT-OD-21-013.html (last visited December 11, 2020).

[5]Final NIH Policy for Data Management and Sharing, NIH National Institutes of Health Office of Extramural Research, Office of The Director, National Institutes of Health (OD), https://grants.nih.gov/grants/guide/notice-files/NOT-OD-21-013.html (last visited December 12, 2020).

[6]Supplemental Information to the NIH Policy for Data Management and Sharing: Elements of an NIH Data Management and Sharing Plan, Office of The Director, National Institutes of Health (OD), https://grants.nih.gov/grants/guide/notice-files/NOT-OD-21-014.html (last visited December 13, 2020).

[7]資料庫列表請參見以下網址:Open Domain-Specific Data Sharing Repositories, NIH National Library of Medicine, https://www.nlm.nih.gov/NIHbmic/domain_specific_repositories.html (last visited December 24, 2020).

[8]Supplemental Information to the NIH Policy for Data Management and Sharing: Selecting a Repository for Data Resulting from NIH-Supported Research, Office of The Director, National Institutes of Health (OD), https://grants.nih.gov/grants/guide/notice-files/NOT-OD-21-016.html (last visited December 13, 2020).

[9]NIH Genomic Data Sharing, National Institutes of Health Office of Science Policy, https://osp.od.nih.gov/scientific-sharing/genomic-data-sharing/ (last visited December 15, 2020).

[10]NIH Genomic Data Sharing Policy, National Institutes of Health (NIH), https://grants.nih.gov/grants/guide/notice-files/NOT-OD-14-124.html (last visited December 17, 2020).

[11]NIH Genomic Data Sharing Policy, National Institutes of Health (NIH), https://grants.nih.gov/grants/guide/notice-files/NOT-OD-14-124.html (last visited December 17, 2020).

[12]id.

[13]NIH National Institutes of Health Turning Discovery into Health, Responsible Use of Human Genomic Data An Informational Resource, 1, at 6, https://osp.od.nih.gov/wp-content/uploads/Responsible_Use_of_Human_Genomic_Data_Informational_Resource.pdf (last visited December 17, 2020).

[14]Update to NIH Management of Genomic Summary Results Access, National Institutes of Health (NIH), https://grants.nih.gov/grants/guide/notice-files/NOT-OD-19-023.html (last visited December 17, 2020).

[15]Francis S. Collins, Statement on Final NIH Policy for Data Management and Sharing, National Institutes of Health Turning Discovery Into Health, https://www.nih.gov/about-nih/who-we-are/nih-director/statements/statement-final-nih-policy-data-management-sharing (last visited December 14, 2020).

 

 

相關連結
相關附件
※ 論科學資料之開放與共享—以美國國家衛生研究院之資料政策為核心 , 資訊工業策進會科技法律研究所, https://stli.iii.org.tw/article-detail.aspx?d=8586&no=645&tp=1 (最後瀏覽日:2026/02/17)
引註此篇文章
你可能還會想看
歐盟提出現行個資保護指令規範之修正草案

歐盟提出現行個資保護指令規範之修正草案 科技法律研究所 2013年10月07日 壹、事件摘要   歐盟於1995年所制定之「個人資料保護指令」(Data Protection Directive,95/46/EC,下稱個資保護指令),其基本原則確保了歐盟會員國個人資料基本權利之保障,後續也成為國際相關立法時之參考依據。但由於個資保護指令制定時為框架式立法模式,歐盟各會員國仍須將相關規定內國法化,導致各會員國間對於個人資料保護標準產生差距。 貳、重點說明 一、立法緣起   歐盟現行之「個資保護指令」是第一部解決關於個人資料處理與自由流通保護之指令,主要在於提供歐盟境內關於個人資料及隱私權保護之規定。但由於該指令使各會員國之規範不具統一性,且制定之時科技尚屬發展階段。為解決科技發展與各國形成之保護差距,歐盟執委會(European Commission)在2012年1 月25 日,向歐洲理事會(European Commission)及歐洲議會(European Parliament)正式提出「一般個人資料保護規則」(General Data Protection Regulation)草案共91 條。預計於2015年施行,並取代現行個資保護指令,全面並一致性適用於各會員國。 二、關鍵改變   本次一般個人資料保護規則草案相較於現行個資保護指令,主要有資料當事人權利行使新增與強化、當事人同意要件標準提高、適用主體擴大、申訴權力強化、資料管理人資料保護責任之加重、損害賠償與相關罰則之規定等,並將各項規定更加明確化,以解決長期以來歐盟會員國間因保護水準不一所形成之衝突現象。 參、事件評析   一般個人資料規則草案提出後,歐盟與英國分別針對新規則草案進行評估。歐盟執委會認為,新規則可協助歐盟境內解決長期以來因個資法保護水準不一所形成之衝突,進而為當地企業帶來約23億歐元之效益;但英國當地卻持反面見解,認為新法將使企業提高所需擔負之行政成本,且高規格之法遵要求也使資料管理人陷入難以遵守之情況,進而影響歐盟之競爭力。國際上激烈的討論聲浪與分歧之見解,也使得該規則草案自提出至今已一年多的時間,仍未正式拍板定案。   歐盟於1995年制定之個資保護指令,自1998年生效之後,不僅在各會員國進行個資保護時扮演關鍵性角色,更為國際上個人資料保護或隱私保護之參考依據,其動向更為各國所專注與留意。而隨著時代轉變與科技演進,歐盟期許未來不只是在歐盟境內,更可將個人資料或隱私保護相關資訊與要求,擴及歐盟以外之國家,因而於2012年提出新規則草案,而後續相關發展,更值得我們持續留意跟進。

歐盟執委會公佈GMOs法制之評估報告

  歐盟執行委員會(European Commission)於2011年10月28日公佈兩份針對歐盟基因改造作物(Genetically Modified Organisms, GMOs)之評估報告,這兩份報告係由執委會委託兩個獨立顧問機構所完成,評估時間自2009年至2011年。第一份報告係針對GMOs食品與飼料規範(EU's legislative framework in the field of GM food and feed)之評估報告;第二份報告係針對GMOs耕作規範(legislative framework in the area of GMOs cultivation)之評估報告。此兩份報告之重要性在於,其收集來自官方及民間對於GMOs法制之事實陳述與意見,如健康與環境的保護、國內市場的產物規範等議題,可作為未來改善歐盟GMOs法制的基礎。   評估指出,歐盟的GMOs法制就健康與環境保護之規範並無偏誤;但在效率及透明度上,尚有改善之空間。此外越來越多含有基因改造的農作物輸入歐盟造成健康及環境之威脅,而須進一步改善風險評估之作法以及調整相關法制。   在過去一年中,執委會已採納報告中之部分建議,著手針對現存法制作出微調及改善,包括: 1.在GMOs耕作上需要更多的彈性。 2.低度殘留(Low Level Presence, LLP)的解決方案。 3.收集關於GMOs耕作的社會經濟層面之技術資訊。 4.新作物播種技術之評估。 5.監控活動的加強。 6.針對成員國批准風險評估的指導方針(Guideline)法制化之檢討與改革。 7.對於GMOs重要議題的溝通活動之改善。   除上述之改善工作持續進行,在接下來幾週,執委會將針對農產品輸入許可制度提出改善方案,以建立更嚴謹的許可要求。由這兩份報告的公佈,可以預見未來歐盟將持續完善現存法制,而此兩份評估報告將如何影響歐盟的GMOs規範,值得持續觀察。

聯邦貿易委員會公布授權學名藥報告,並展開調查及處罰裁決

  美國聯邦貿易委員會(Federal Trade Commission,FTC)鑒於近期授權學名藥(Authorized Generic,指由原專利藥廠於專利到期後自行或授權所推出之學名藥)上市申請頻率遽增,且授權學名藥專利和解協議日多之現況,自今(2009)年起,即積極展開一系列調查行動,先後於3月首度對授權學名藥和解協議案件祭出處罰裁決,並於6月公佈一份有關授權學名藥報告(Authorized Generic: An Interim Report)。   在美國授權學名藥法規(即Hatch-Waxman Act)架構下,首次提出簡易新藥審查申請取得學名藥上市許可之第一申請者(first-filer),得享有180日之市場專屬保護期間,除授權學名藥外,保護期間內其他藥廠一概不得推出相仿學名藥。   美國學名藥市場專屬保護期間之設計,原是希望藉此加速學名藥研發與上市,達到降低藥品取得價格之效,但根據FTC調查顯示,由於授權學名藥在市場專屬保護期間內依法得進入市場,於受到授權學名藥介入競爭之壓力下,第一申請者學名藥零售價格會比原先下降4.2%,經銷價格會下降6.5%,並減少該第一申請者藥廠47-51%的收入。在此背景下,越來越多第一申請者藥廠傾向採擬與原專利品牌藥廠達成延遲學名藥上市協議之策略,藉此互為其利。根據FTC統計,2004-2008年間約有25%的專利和解案件涉及授權學名藥條款,76%的對造為第一申請者學名藥藥廠,其中有25%的和解,是由授權學名藥藥廠與第一申請者藥廠就於一定期間(平均約為34.7月)不進入市場互為承諾。   FTC目前唯一的監管機制,係依據醫療照護現代化法(The Medicare Prescription Drug, Improvement, and Modernization Act of 2003,MMA),要求專利藥廠若與學名藥廠做成任何專利訴訟和解協議或相關協議時,應於協議生效10日內向FTC通報,以供FTC決定是否展開反競爭調查。FTC對於此類協議之審查上,終於今年3月有所進展,宣布必治妥(Bristol-Myers Squibb,BMS)應就其與Apotex公司間所達成專利訴訟和解協議繳交210萬美元。

日本發布《資料品質管理指引》,強調歷程存證與溯源,建構可信任AI透明度

2025年12月,日本人工智慧安全研究所(AI Safety Institute,下稱AISI)與日本獨立行政法人情報處理推進機構(Information-technology Promotion Agency Japan,下稱IPA)共同發布《資料品質管理指引》(Data Quality Management Guidebook)。此指引旨於協助組織落實資料品質管理,以最大化資料與AI的價值。指引指出AI加劇了「垃圾進,垃圾出(Garbage in, Garbage out)」的難題,資料品質將直接影響AI的產出。因此,為確保AI服務的準確性、可靠性與安全性,《資料品質管理指引》將AI所涉及的資料,以資料生命週期分為8個階段,並特別強調透過資料溯源,方能建立透明且可檢核的資料軌跡。 1.資料規劃階段:組織高層應界定資料蒐集與利用之目的,並具體說明組織之AI資料生命週期之各階段管理機制。 2.資料獲取階段:此步驟涉及生成、蒐集及從外部系統或實體取得資料,應優先從可靠的來源獲取AI模型的訓練資料,並明確記錄後設資料(Metadata)。後設資料指紀錄原始資料及資料歷程之相關資訊,包含資料的創建、轉檔(transformation)、傳輸及使用情況。因此,需要記錄資料的創建者、修改者或使用者,以及前述操作情況發生的時間點與操作方式。透過強化來源透明度,確保訓練資料進入AI系統時,即具備可驗證的信任基礎。 3.資料準備階段:重點在於AI標註(Labeling)品質管理,標註若不一致,將影響AI模型的準確性。此階段需執行資料清理,即刪除重複的資料、修正錯誤的資料內容,並持續補充後設資料。此外,可添加浮水印(Watermarking)以確保資料真實性與保護智慧財產權。 4.資料處理階段(Data Processing):建立即時監控及異常通報機制,以解決先前階段未發現的資料不一致、錯漏等資料品質問題。 5.AI系統建置與運作階段:導入RAG(檢索增強生成)技術,檢索更多具參考性的資料來源,以提升AI系統之可靠性,並應從AI的訓練資料中排除可能涉及個人資料或機密資訊外洩的內容。 6. AI產出之評估階段(Evaluation of Output):為確保產出內容準確,建議使用政府公開資料等具權威性資料來源(Authoritative Source of Truth, ASOT)作為評估資料集,搭配時間戳記用以查核參考資料的時效性(Currentness),避免AI採用過時的資料。 7.AI產出結果之交付階段(Deliver the Result):向使用者提供機器可讀的格式與後設資料,以便使用者透過後設資料檢查AI產出結果之來源依據,增進透明度與使用者信任。 8.停止使用階段(Decommissioning):當資料過時,應明確標示停止使用,若採取刪除,應留存刪除紀錄,確保留存完整的資料生命週期紀錄。 日本《資料品質管理指引》強調,完整的資料生命週期管理、強化溯源為AI安全與創新的基礎,有助組織確認內容準確性、決策歷程透明,方能最大化AI所帶來的價值。而我國企業可參考資策會科法所創意智財中心發布之《重要數位資料治理暨管理制度規範(EDGS)》,同樣強調從源頭開始保護資料,歷程存證與溯源為關鍵,有助於組織把控資料品質、放大AI價值。 本文為資策會科法所創智中心完成之著作,非經同意或授權,不得為轉載、公開播送、公開傳輸、改作或重製等利用行為。 本文同步刊登於TIPS網站(https://www.tips.org.tw)

TOP