美國專利商標局「中國大陸商標與專利」報告

  美國專利商標局(USPTO)於2021年1月13日發布「中國大陸商標與專利:非市場因素對申請趨勢與智財體系之影響」(Trademarks and Patents in China: The Impact of Non-Market Factors on Filing Trends and IP Systems)研究報告,指出中國大陸近年來急遽增加的專利與商標申請案件數,從申請海外專利保護比率低、專利發明商業化比率低以及惡意(bad-faith)或詐欺性(fraudulent)商標申請案件比率高等現象觀察,申請案件數的爆量很有可能源自政府補貼或其他非市場因素的影響。

  USPTO指出,中國大陸在2019年的專利與商標申請案件數均達到歷史新高,包含商標案件數達780萬件、發明專利申請案件數達150萬件,已經接近全球申請案件數的一半,也引起國際的關注。有別於其他國家因創新活動熱絡所帶動的專利及商標申請案件量增長,中國大陸在2020年世界智財組織(WIPO)所統計的智財授權比率僅排名第44,顯示中國大陸在智財商業化比率極低,其專利與商標申請案件數的暴增可能源於其他非市場因素。

  USPTO指出,政府補貼可能是刺激商標與專利申請案件數增長的最大原因,由於中國大陸中央與地方政府持續推動商標補貼措施,補貼金額通常高於商標註冊費用,進而引導人民大量註冊非為商業使用之商標,在專利申請上也有類似的情況,中國大陸政府推動超過195個專利補貼措施,創造了以申請專利賺取補貼的誘因。這些非市場因素的商標及專利申請案件,除了可能誤導對於中國大陸創新能力的評估外,也正在破壞保護真正創新活動的能量。

本文為「經濟部產業技術司科技專案成果」

相關連結
相關附件
你可能會想參加
※ 美國專利商標局「中國大陸商標與專利」報告, 資訊工業策進會科技法律研究所, https://stli.iii.org.tw/article-detail.aspx?d=8612&no=0&tp=1 (最後瀏覽日:2025/08/20)
引註此篇文章
你可能還會想看
美國FDA發佈食品安全現代化法(FSMA)之產品安全建議規則(PSPR)最終版

  在農產品業,食品安全在所有人的心中佔了極重要的位置。美國食品及藥物管理局(Food and Drug Administration,下稱FDA)在2015年9月發佈了食品安全現代化法(Food Safety Modernization Act;下稱FSMA)之產品安全建議規則(Produce Safety Proposed Rule;下稱PSPR)的最終版(final rule)。該規則的發布,預將使零售商尋找供應商的方向,轉變為以有遵守FSMA的供應商作為交易的對象。   PSPR主要是在規定人類消費之蔬果產品生長、繁殖、包裝、販售之規則。新增規範重點如下: 1. 農業用水(Agricultural Water):針對農業用水之品質標準、水質測試方式,作出規範。 2. 生物土壤改良(Biological Soil Amendments):對於改良土壤可能使用到之肥料或相關之微生物,作出規範。 3. 抽芽(Sprouts):對於植物在抽芽時相關預防微生物汙染、微生物測試,作出規範。 4. 馴養動物與野生動物(Domesticated and Wild Animals):針對在農場內放牧之動物,或用來幫助耕作動物之管理,作出規範。 5. 人員訓練、健康與衛生管理(Worker Training and Health and Hygiene):針對相關人員之教育訓練、衛生管理以及健康,作出規範。 6. 設備、工具與建築物(Equipment, Tools and Buildings):為了預防生產過程中可能遭受汙染之情況,對於硬體設備作出規範。   FSMA是美國第一個關於食品安全之立法,美國農業部(Department of Agriculture;USDA)為了讓零售商或中盤商更了解其自身對食品安全之需求以找尋適合之供應商,更預計在2016年春季推行集團優良農業作業準則前導計畫( Group Gap Pilot Program),提供第三方認證服務,以確認農產品所有之作業都有遵守FSMA及FDA之建議。

國際能源總署發布CCUS(碳捕捉、利用及封存)法律與管制框架指引文件,協助各國建立相應法制

  國際能源總署(International Energy Agency, IEA)於2022年7月發布「CCUS法律與管制框架:IEA CCUS指引」(Legal and Regulatory Frameworks for CCUS: An IEA CCUS Handbook),協助各國建構碳捕捉、利用及封存(carbon capture, utilisation and storage, CCUS)相關法制。CCUS是有助於實現2050年全球淨零目標的重要除碳技術,可以捕捉空氣中或大型排放源裡的二氧化碳,將捕捉到的二氧化碳進行再利用,或將二氧化碳注入深層地質構造當中永久封存,藉此減緩全球氣候變遷。   建立健全的CCUS管制架構對於達成全球氣候目標至關重要,IEA於該報告中進一步探討25項法制優先議題,大致可依開發階段區分為資源評估(如二氧化碳及地下空隙空間所有權歸屬)、場址開發、施工、營運、開發、關閉與關閉後防止碳洩漏之法律問題。   由於CCUS在各國發展情況有所差異,IEA提出數種立法模式,例如(1)修改既有廢棄物法律規範以管理CCUS活動,但可能無法涵蓋地下權等其他議題;(2)修正部分既有廢棄物規範並結合環境法規既有之管理面向(如環評等)以形成管制框架;(3)在既有的礦產或石油開發規範建立相關二氧化碳注入與儲存等活動規範,將可包含地下權、開發許可程序、營運及關閉等完整生命週期之立法。(4)制定專法以涵蓋CCUS所有面向之活動。   在國際經驗中,立法者與管制機關於建構CCUS法律框架時,經常遭遇下列問題,包含:(1)CCUS在滿足國家能源需求方面的預期作用為何?(2)CCUS法規如何與現有規範進行調適?(3)是否已有可用的監管指導原則?(4)誰是主要的利害關係人?應如何與之進行溝通?(5)未來是否有審查或修正框架之相關程序?(6)監管機構是否有足夠資源監督CCUS活動?IEA建議釐清上述議題,逐步形塑CCUS管制架構。

英國氣候過渡計畫小組公布氣候揭露報告框架的最終版本

英國氣候過渡計畫工作小組(Transition Plan Taskforce,以下稱TPT)於2023年10月9日公布其氣候揭露報告框架(TPT Disclosure Framework,下稱「框架」)最終版本及使用指引。TPT是英國財政部在2022年4月成立,負責建立氣候過渡計畫準則。TPT則於2022年11月提出框架草案,並開始徵詢產官學界意見,最後提出正式版本。 TPT框架建議企業以宏觀、有策略的方式制定氣候過渡計畫。TPT框架從企圖心、行動力和當責性三項原則出發,分別就五個必須揭露的事項說明如何在氣候揭露報告中呈現企業的氣候過渡計畫: 一、企圖心:說明企業的基礎事項,例如氣候戰略目標和商業模式。 二、行動力:說明過渡計畫的執行策略、以及擴大參與的策略。 三、當責性:說明將採用哪些指標與標的來監督計畫的執行、以及如何將過渡計畫融入企業的治理當中。 TPT也配合框架內容制定行業指引,目前已公布40個行業摘要(Sector Summary),簡述各行業可用的脫碳手段、指標與目標。未來還將公布針對銀行業、資產擁有者、資產管理者、電力公用事業和電力發電機、食品與飲料、金屬與礦業、石油和天然氣等7個行業的深度剖析(Sector Deep Dives)。 此外,TPT網站上也提供TPT框架與相關國際主流框架或準則之比較報告給各界參考,要使這套由英國自行開發、為英國內部量身打造的框架也能接軌國際,其未來實施成效值得繼續追踪觀察。

英國發布「人工智慧:機會與未來決策影響」政策報告,並聚焦人工智慧運用及管理

  英國科學辦公室於2016年11月9日,發布一份政策報告:「人工智慧:機會與未來決策影響(Artificial intelligence: opportunities and implications for the future of decision making)」,介紹人工智慧對於社會及政府的機會和影響,此份政策報告並提出以下各項重要建議: (一)關於人工智慧及應用界定與發展   人工智慧是指由人工製造系統所表現出來的智慧。不僅是將現有的流程自動化,還包含制定目標,並利用電腦程式實現這些目標,常見案例包括線上翻譯、語音辨識、搜尋引擎篩選排序、垃圾郵件過濾、透過用戶回饋改善線上服務、預測交通流量、環境或社會經濟趨勢發展觀察等。 (二)未來對社會及政府利益及衝擊   人工智慧針對提高生產力有巨大的潛力,最明顯的就是幫助企業或個人更有效地運用資源,並簡化大量資料的處理,例如Ocado 及 Amazon這樣的公司正充份利用人工智慧改善倉儲及銷售網路系統,使得客戶可便利快速購得網購商品。   目前,政府也日益增加相關技術的運用,以提高公共服務效率,使資源達到最佳化分配;減少決策者被誤導的可能;使政府決策透明化;確保各部門更了解人民的意見。然政府在利用人工智慧及巨量資料時,應遵守倫理使用指南,並遵守英國資料保護法及歐盟一般資料保護規則等相關法規。   在巨量資料、機器人、自動系統對於勞動市場的衝擊一直都是關注的議題,對於面臨未來工作結構的轉型及相關技術人員的進修及培養,應及早規劃,以適應未來的轉變。 (三)關於相關道德及法律風險管理課題   人工智慧可能潛在相關道德倫理問題。許多專家認為政府應積極管理並降低風險發生可能性,可從以下兩個面向思考: (1)研究機器學習與個人資料運用結合時,對個人自由、隱私和同意等概念的影響。 (2)調適由人工智慧作決策行為時的歸責概念和機制。   有關實際案例之研究,則包括,執法單位在應用預測技術時,應避免以種族、國籍、地址作為標準,並嚴守無罪推定原則,以防止民眾受到歧視或不公平的指控;透過人工智慧可從公開資料推測出某些私人訊息或其親朋好友的消息,此訊息即可能超出原先個人同意披露的內容;原先匿名化及去識別化的訊息,因人工智慧功能加強,導至可能被重新識別,故須定期檢視該保護措施是否足夠。另外,人工智慧的演算偏差可能導致偏見的風險,為了降低這種風險,技術人員應採取對應措施。   針對責任及疏失的判斷,目前尚無太多的實務案例,但為保持對使用人工智慧的信任,仍需有明確的歸責制,可能有必要讓首席執行長或高級主管對人工智慧做出的決策負最終責任。許多專家也建議,部分技術內容須保持透明度,以確定技術使用時是否有盡到相關注意義務。   人工智慧已成為未來發展趨勢之一,對於社會整體層面影響將越來越深,新的技術除了可提升生產力,帶來便利的生活,同樣也會帶來衝擊。為促進相關產業發展及推展新技術的使用,應打造技術發展友善環境,並對於公眾安全進行相關風險評估,如果風險屬於現有監管制度範圍,應評估是否可充分解決風險,或是須要做相對應的調適。另外,在人工智慧融入現實世界同時,相關業者應注意相關產品安全性、隱私權保護和從業人員的倫理教育,以提高大眾對新技術的接受及信賴,並確保對於未來挑戰及轉變已做好萬全準備。

TOP