美國專利商標局(USPTO)於2021年1月13日發布「中國大陸商標與專利:非市場因素對申請趨勢與智財體系之影響」(Trademarks and Patents in China: The Impact of Non-Market Factors on Filing Trends and IP Systems)研究報告,指出中國大陸近年來急遽增加的專利與商標申請案件數,從申請海外專利保護比率低、專利發明商業化比率低以及惡意(bad-faith)或詐欺性(fraudulent)商標申請案件比率高等現象觀察,申請案件數的爆量很有可能源自政府補貼或其他非市場因素的影響。
USPTO指出,中國大陸在2019年的專利與商標申請案件數均達到歷史新高,包含商標案件數達780萬件、發明專利申請案件數達150萬件,已經接近全球申請案件數的一半,也引起國際的關注。有別於其他國家因創新活動熱絡所帶動的專利及商標申請案件量增長,中國大陸在2020年世界智財組織(WIPO)所統計的智財授權比率僅排名第44,顯示中國大陸在智財商業化比率極低,其專利與商標申請案件數的暴增可能源於其他非市場因素。
USPTO指出,政府補貼可能是刺激商標與專利申請案件數增長的最大原因,由於中國大陸中央與地方政府持續推動商標補貼措施,補貼金額通常高於商標註冊費用,進而引導人民大量註冊非為商業使用之商標,在專利申請上也有類似的情況,中國大陸政府推動超過195個專利補貼措施,創造了以申請專利賺取補貼的誘因。這些非市場因素的商標及專利申請案件,除了可能誤導對於中國大陸創新能力的評估外,也正在破壞保護真正創新活動的能量。
本文為「經濟部產業技術司科技專案成果」
據2024年1月5日IAM報導(下稱IAM報導)依據Deloitte 2023年的研究報告(Deloitte IP 360 Survey)指出大部分的企業雖然有認知到營業秘密對於企業而言承載重大的價值,但仍通常缺乏管理的意識和具體措施,然而對於企業來說營業秘密管理卻是具有重要性的。 IAM報導綜整了一篇Deloitte 2023年的研究報告(Deloitte IP 360 Survey,下稱系爭報告),其針對橫跨15個國家、5大產業共57間公司的智慧財產管理成熟度進行調查分析,系爭報告指出大部分的企業針對專利、商標等註冊取得之智慧財產權多擁有成熟且全面的管理措施,但針對其他難以發現的無形資產(“hard-to-find” intangibles),如營業秘密、資料、know-how等,通常缺乏管理的意識和措施,例如:大約有29%的受訪者表示企業「未積極地捕獲」(原文為actively capture,大意指識別、管理和保護)營業秘密;約14%的受訪者表示企業未建立標準化流程或方針以識別營業秘密。並且,針對營業秘密的具體管理作法,IAM報導特別著重以下三點: 1.主動監測:僅僅只有25%的受訪者表示,企業有主動監測營業秘密之產出,並具有相關管制措施。 2.教育訓練:有42%的受訪者表示未受過營業秘密意識的訓練(trade secret awareness training)。IAM報導特別指出,若員工對於營業秘密的範圍以及重要性沒有概念,則營業秘密管理機制的建立也會失去其意義。 3.離職面談:即使有相當大比例的營業秘密訴訟源於離職員工,但在既有離職面談中是否有納入營業秘密意識訓練的調查上,僅有不到一半(47%)的受訪企業表示有做,24%的企業表示沒有做,還有29%的企業不確定是否有做。 綜上所述,系爭報告提出,許多企業在營業秘密的管理上仍有很大的進步空間,並提醒,在訴訟上只有營業秘密擁有者採取「合理保密措施」(包括建立標準化機制)來保護營業秘密時,在法律上才能獲得更大的保護以及獲得損害賠償的機會。 針對營業秘密管理制度建置,企業可參考資策會科法所發布之「營業秘密保護管理規範」,該規範從識別營業秘密開始,到營業秘密使用管理、員工管理(包含人員進用離職時應採取措施、教育訓練)等均有相關要求,可協助企業透過PDCA循環建置系統性營業秘密規範,補足缺乏的營業秘密管理意識和具體保密措施。 本文同步刊登於TIPS網(https://www.tips.org.tw)
南韓個資保護委員會發布人工智慧(AI)開發與服務處理公開個人資料指引南韓個資保護委員會(Personal Information Protection Commission, PIPC)於2024年7月18日發布《人工智慧(AI)開發與服務處理公開個人資料指引》(인공지능(AI) 개발·서비스를 위한 공개된 개인정보 처리 안내서)(以下簡稱指引)。該指引針對AI開發與服務處理的公開個人資料(下稱個資)制定了新的處理標準,以確保這些資料在法律上合規,且在使用過程中有效保護用戶隱私。 在AI開發及服務的過程中,會使用大量從網路上收集的公開資料,這些公開資料可能包含地址、唯一識別資訊(unique identifiable information, UII)、信用卡號等個資。這些公開的個資是指任意人可藉由網路抓取技術自公開來源合法存取的個資,內容不限於個資主體自行公開的資料,還包括法律規定公開的個資、出版物和廣播媒體中包含的個資等。由於公開資料眾多,在現實中很難在處理這些公開個資以進行AI訓練之前,取得每個個資主體的單獨同意及授權,同時,南韓對於處理這些公開個資的現行法律基礎並不明確。 為解決上述問題,PIPC制定了該指引,確認了蒐集及利用公開個資的法律基礎,並為AI開發者和服務提供者提供適用的安全措施,進而最小化隱私問題及消除法律不確定性。此外,在指引的制定過程中,PIPC更參考歐盟、美國和其他主要國家的做法,期以建立在全球趨勢下可國際互通的標準。 指引的核心內容主要可分為三大部分,第一部分:應用正當利益概念;第二部分:建議的安全措施及保障個資主體權利的方法;及第三部分:促進開發AI產品或服務的企業,在開發及使用AI技術時,注意可信任性。 針對第一部分,指引中指出,只有在符合個人資料保護法(Personal Information Protection Act, PIPA)的目的(第1條)、原則(第3條)及個資主體權利(第4條)規定範圍內,並滿足正當利益條款(第15條)的合法基礎下,才允許蒐集和使用公開個資,並且需滿足以下三個要求:1.目的正當性:確保資料處理者有正當的理由處理個資,例如開發AI模型以支持醫療診斷或進行信用評級等。2.資料處理的必要性:確保所蒐集和利用的公開資料是必要且適當的。3.相關利益評估:確保資料處理者的正當利益明顯超越個資主體的權利,並採取措施保障個資主體的權利不被侵犯。 而第二部分則可區分為技術防護措施、管理和組織防護措施及尊重個資主體權利規定,其中,技術防護措施包括:檢查訓練資料來源、預防個資洩露(例如刪除或去識別化)、安全存儲及管理個資等;管理和組織防護措施包括:制定蒐集和使用訓練資料的標準,進行隱私衝擊影響評估(PIA),運營AI隱私紅隊等;尊重個資主體權利規定包括:將公開資料蒐集情形及主要來源納入隱私政策,保障個資主體的權利。 最後,在第三部分中,指引建議AI企業組建專門的AI隱私團隊,並培養隱私長(Chief Privacy Officers, CPOs)來評估指引中的要求。此外,指引亦呼籲企業定期監控技術重大變化及資料外洩風險,並制定及實施補救措施。 該指引後續將根據PIPA法規修訂、AI技術發展及國際規範動向持續更新,並透過事前適當性審查制、監管沙盒等途徑與AI企業持續溝通,並密切關注技術進步及市場情況,進而推動PIPA的現代化。
美國音樂授權制度邁向新里程碑:集體授權組織MLC將於後年正式運行!美國「音樂現代化法案」(Music Modernization Act,簡稱 MMA) 於2018年10月由總統川普簽署成為有效法律之後,於今年(2019)9月17日正式對外發布消息,其依照MMA之規定,美國著作權局已於今年7月8日指定由「美國音樂發行協會」(National Music Publishers Association,簡稱NMPA)成立「機械式集體授權組織」(The Mechanical Licensing Collective,簡稱MLC)。NMPA係全美音樂發行商之貿易協會,早於1917年運行至今,現被指定成立MLC,擬於2021年1月正式開始進行全美音樂之「概括授權」(blanket license),並維運前所未有的「透明化資料庫」,期能對接音樂串流平台,促使音樂作品比對相關著作權之權利人,藉以有效率且準確地支付相關授權金給詞曲創作人和發行人,且串流平台業者只要確實遵守MMA之概括授權與MLC之運作方式,即免於侵權責任MLC之組織體編制與人員名單資訊,亦透明地揭示於官網,其設有MLC董事會(由BMG、SONY、華納音樂等背景之人員擔任),以及「無人認領授權金監督委員會」、「爭端解決委員會」、「營運顧問委員會」等三個委員會,各委員均由音樂著作權人或詞曲創作等人擔任。 MMA立法之初,試圖創設一全新、單一窗口非營利組織,並建置符合現代科技的數位資料庫,來解決音樂授權的痛點。而今MLC即將於後年1月正式運行,在數位時代借力科技,帶領音樂授權邁向新里程碑!
日本對未來2020年至2030年間網路基礎設施之預測日本總務省未來網路基礎設施研究會(将来のネットワークインフラに関する研究会)4月份針對日本人工智慧(Artificial Intelligence 簡稱AI)、物聯網(Internet of Things 簡稱IoT)、資訊及通訊技術(Information and Communication Technologies 簡稱ICT)等技術相對應之網路基礎設施做作出預測。 在2020年以後第五代通信技術(5G)、物聯網系統、高畫質通訊等技術相繼成熟及普及化,相關業者勢必發展出多樣化、高度專業化使用者需求之網路結構,而手機聯網系統從單純的資訊傳遞網路,逐漸變成社會系統之神經網絡(社会システムの神経網)。 物聯網服務目前係由專用終端設備,並根據特定的應用目的建構,但在未來的網絡基礎設施,可能出現如橫向合作應用的通用平台,到2030年左右物聯網服務中M2M(Machine to Machine,機器和機器之間的通訊)的佔有率估計將達到10%。 人工智慧網路技術不僅僅是虛擬化層網路(仮想化レイヤのネットワーク)之維護和操作,更是物理層面的網路(物理レイヤのネットワーク)資源的管理,AI仍然只擔任協助之工具。其中,物理網絡(物理ネットワーク)和邏輯網絡(論理ネットワーク)應分別處理,邏輯網絡將型成多層次化,將變得難以檢測故障和調查原因,但在安全和可靠的網絡基礎設施下,經營者使用AI技術仍然是沒有問題的。 由於雲端技術、通訊技術之提昇,非電信營運者進入網路經營之商業型態逐漸產生,型成網路使用者、資料提供者之多樣性及複雜性。網路流量方面,在2030年左右將超出100Tbps核心網絡所需的傳輸容量,達到以往的光纖的容量限制,將透過無線電接入技術進一步發展,補足不足的光學寬頻。然而,人們對於網路更快的通信速度、安全性及可靠性的功能需求是沒有改變的。