當被授權人挑戰授權專利之有效性--美國法院對上訴條件「受有損害」的認定標準

  2021年4月7日美國聯邦巡迴上訴法院(United States Court of Appeals for the Federal Circuit,下稱CAFC)發布了關於Apple Inc. v. Qualcomm Inc.的裁決,指出因Apple Inc.(下稱Apple)未能滿足提起上訴的資格「證明授權專利的有效性會對授權協議義務產生具體的損害影響」,故駁回其對於專利審理暨訴願委員會(Patent Trial and Appeal Board ,下稱PTAB)做出之US7,844,037與US8,683,362專利(下稱爭議專利)有效性決定的上訴。

  此案爭議專利是由Qualcomm Inc.(下稱Qualcomm)持有,Qualcomm曾以Apple侵犯爭議專利提起侵權訴訟,Apple隨後在PTAB對爭議專利提出多方複審程序(Inter partes review,下稱IPR),以挑戰爭議專利的有效性,但最後沒有成功。隨後,Apple與Qualcomm達成專利侵權和解協議並簽署了授權契約,授權的專利組合中也包含爭議專利。

  在專利侵權和解協議後,Apple還是針對IPR的結果向CAFC提起上訴。由於提起上訴條件之一是上訴人需有受到損害的事實,Apple以其需持續支付權利金的義務主張有受到損害的事實。但CAFC認為,Apple並沒有證明若爭議專利被視為無效,則根據其與Qualcomm授權契約所應承擔的付款義務會發生改變。因此,法院裁定Apple不符合對IPR的結果提起上訴的資格。

  由上述可知,作為專利被授權人,若要在授權契約條件下對爭議專利有效性決定提上訴,需要設法證明爭議專利的有效性會對授權協議義務產生具體的影響,否則被授權人將難以因其具有實質的損害從而讓法院啟動上訴作業。

相關連結
相關附件
你可能會想參加
※ 當被授權人挑戰授權專利之有效性--美國法院對上訴條件「受有損害」的認定標準, 資訊工業策進會科技法律研究所, https://stli.iii.org.tw/article-detail.aspx?d=8653&no=0&tp=1 (最後瀏覽日:2025/12/24)
引註此篇文章
你可能還會想看
美國「刑事鑑識演算法草案」

  美國眾議院議員Mark Takano於2019年10月2日提出「刑事鑑識演算法草案」 (Justice in Forensic Algorithms Act),以建立美國鑑識演算法標準。依據該法第2條,美國國家標準與技術研究所(National Institute of Standard)必須建立電算鑑識軟體之發展與使用標準,且該標準應包含以下內容: 一、以種族、社會經濟地位、兩性與其他人口特徵為基礎之評估標準,以因應使用或發展電算鑑識軟體,所造成區別待遇產生之潛在衝擊。 二、該標準應解決:(1)電算鑑識軟體所依據之科學原則與應用之方法論,且於具備特定方法之案例上,是否有足夠之研究基礎支持該方法之有效性,以及團隊進行哪些研究以驗證該方法;(2)要求對軟體之測試,包含軟體之測試環境、測試方法、測試資料與測試統計結果,例如正確性、精確性、可重複性、敏感性與健全性。 三、電算鑑識軟體開發者對於該軟體之對外公開說明文件,內容包含軟體功能、研發過程、訓練資料來源、內部測試方法與結果。 四、要求使用電算鑑識軟體之實驗室或其他機構應對其進行驗證,包含具體顯示於哪個實驗室與哪種狀況下進行驗證。此外,亦應要求列於公開報告內之相關資訊,且於軟體更新後亦應持續進行驗證。 五、要求執法機關於起訴書或相關起訴文件上應詳列使用電算鑑識軟體之相關結果。

美國地方法院裁定產品專利資訊標示不實之罰金計算以該產品之最高售價為基礎

  繼美國聯邦巡迴上訴法院於2009年底於The Forest Group Inc v. Bon Tool Co. 一案中將美國專利法35 U.S.C. § 292條中關於不實專利標示(false patent marking)的罰金計算方式認定為罰金之計算是以每一個標示錯誤專利資訊的產品為基礎,並將原案發回地方法院(the U.S. District Court for the Southern District of Texas)重審後,地方法院於今年4月27日裁定基於專利法第292條具懲罰性之本質,針對標示錯誤或標示無效專利號之產品之罰金應以該產品之最高售價而非被告基於販售該產品所獲得之利潤或經濟利益來計算。   於此案中,The Forest Group產品之售價介於美金 $103至 $180元間,法院因而裁定處以The Forest Group每一標示錯誤專利資訊產品 $180元之罰金。 Atlas 法官提到藉由將標示不實專利資訊者處以該產品之最高售價之罰金,The Forest Group所需賠償之罰金將超過其藉由販售該產品所獲取之利益,達到第292條遏制之目的。   預計此案之判決將對其他地方法院於處理類似案件之判定產生引響,尤其對那些將錯誤專利資訊標示在大量產品上的被告而言。此外,正如各界所預料,繼去年聯邦巡迴上訴法院對第292條提出罰金計算基礎之解釋後,提起相關訴訟案件之數量已大量提升,至今已累積約140案。另,聯邦巡迴上訴法院亦剛於6月10日於Pequignot v. Solo Cup 一案中針對標示過期專利、舉證責任等與第292條相關之爭議做出解釋,後續效應直得企業持續關注。

英國將開放區域性媒體整併自由

  英國通訊事業主管機關OFCOM擬開放區域性媒體化業經營和併購,藉由開放來促使地區性媒體度過在經濟衰退時廣告量不足之窘境,以保障人民得以接收多元資訊。同時,促使區域性媒體之整併亦有助於對抗最大規模之媒體BBC,有促進市場競爭之狀態。   OFCOME在建議報告(Report of the Secretary of State on the Media Ownership Rules)中提到,對於電視、廣播和報紙所有權之限制,其規範目的在於給予民眾接受多元的觀點和不同新聞、資訊和意見的管道。但是近年來,網路已經漸漸成為接收新聞的替代來源,加上經濟因素之衝擊,在這樣的轉變下,區域性媒體所有權是否仍應受從前跨業經營之規範,有值得檢視之處,故提出幾點建議,包含: 1-移除數項法規中關於廣播公司所有權之限制; 2-區域媒體自由化下,僅限制單一媒體不得同時符合下列三項:(1)大於50%市佔率的區域性報紙;(2)區域性廣播基地台(a local radio station);(3)三個區域性的電視頻道; 3-修改新聞提供者法案(The appoint news provider rule)用以確保第三頻道新聞來源非由BBC提供,而提供民眾多元之選擇。

美國加州「Asilomar人工智慧原則決議」

  美國加州議會於2018年9月7日通過Asilomar人工智慧原則決議(23 Asilomar AI Principles, ACR-215),此決議表達加州對於「23條Asilomar人工智慧原則」之支持,以作為產業或學界發展人工智慧、政府制定人工智慧政策之指標,並提供企業開發人工智慧系統時可遵循之原則。依此法案所建立之重要指標如下: (1)於研究原則上,人工智慧之研究應以建立對於人類有利之人工智慧為目標。 (2)於研究資助上,人工智慧之研究資助應著重幾個方向,如:使人工智慧更加健全且可抵抗外界駭客干擾、使人工智慧促進人類福祉同時保留人類價值以及勞動意義、使法律制度可以順應人工智慧之發展。 (3)於科學政策之連結上,人工智慧研究者與政策擬定者間應有具有建設性且健全之資訊交流。 (4)於研究文化上,人工智慧研究者應保持合作、互信、透明之研究文化。 (5)於安全性上,人工智慧研究團隊應避免為了研究競爭而忽略人工智慧應具備之安全性。 (6)人工智慧系統應該於服務期間內皆具備安全性及可檢視性。 (7)人工智慧系統之編寫,應可使外界於其造成社會損失時檢視其出錯原因。 (8)人工智慧系統如應用於司法判斷上,應提供可供專門人員檢視之合理推論過程。 (9)人工智慧所產生之責任,應由設計者以及建造者負擔。 (10)高等人工智慧內在價值觀之設計上,應符合人類社會之價值觀。 (11)高等人工智慧之設計應可與人類之尊嚴、權利、自由以及文化差異相互調和。 (12)對於人工智慧所使用之資料,其人類所有權人享有擷取、更改以及操作之權利。 (13)人工智慧之應用不該限制人類「客觀事實上」或「主觀知覺上」之自由。 (14)人工智慧之技術應盡力滿足越多人之利益。 (15)人工智慧之經濟利益,應為整體人類所合理共享。 (16)人類對於人工智慧之內在目標應享有最終設定權限。 (17)高等人工智慧所帶來或賦予之權力,對於人類社會之基本價值觀應絕對尊重。 (18)人工智慧所產生之自動化武器之軍備競賽應被禁止。 (19)政策上對於人工智慧外來之發展程度,不應預設立場。 (20)高等人工智慧系統之研發,由於對於人類歷史社會將造成重大影響,應予以絕對慎重考量。 (21)人工智慧之運用上,應衡量其潛在風險以及可以對於社會所帶來之利益。 (22)人工智慧可不斷自我循環改善,而可快速增進運作品質,其安全標準應予以嚴格設定。 (23)對於超人工智慧或強人工智慧,應僅為全體人類福祉而發展、設計,不應僅為符合特定國家、組織而設計。

TOP