澳大利亞總理及內閣部(The Department of the Prime Minister and Cabinet,PM&C)之國家資料委員辦公室(Office of the National Data Commissioner)於2020年12月9日提交「澳大利亞資料可用性及透明度法案」(Data Availability and Transparency Bill 2020)至澳大利亞國會(Parliament of Australia),國會並已完成一讀及二讀 。
該法案旨在建立一個新的公部門資料共享方案,將原先未開放的公部門資料,透過本法案所設計的共享公部門資料相關管理制度,以促進公部門資料的可存取性及保障措施的一致性,藉此提高公部門資料透明度和大眾利用公部門資料的信心。
該法案所設計的資料共享機制,係由作為「資料保管者」(Data custodians)的各聯邦部門和州政府,自行或透過「被認證的資料服務提供者」(Accredited data service provider,下稱ADSP)共享其所保管的政府資料,使「被認證的利用者」(Accredited user,下稱利用者)得以利用之。
另外,該法案要求資料保管者必須在符合資料共享要件的情況下,才能共享資料,要件包含:
1、資料共享目的:係指該法案只允許資料保管者基於「提供政府服務」、「通知政府政策和計畫」、「研究與開發」等三個目的分享資料。倘涉及國家安全及犯罪調查等需要特殊監督利用機制的政府資料,則不包含在內。
2、資料共享原則:包含符合公共利益或道德評估之計畫;具備適合共享資格的人員;安全環境;資料最小化;合目的產出等五個原則。
3、資料共享協議:資料保管者與利用者之間,必須簽定「資料共享協議」,該法案有規定資料共享協議的應記載條款。
滿足上述要求時,該法案使原先被法律限制共享,或單純未積極開放的資料,都得以在利用者提出要求後,於符合要件及資訊保密相關法規後共享。反之,若不符合法案的要求,則不得共享資料,回復到原先的法律狀態,適用原先的資料保護框架。
最後,該法案授權獨立監管機構「國家資料委員」(National Data Commissioner),負責認證ADSP及可利用共享資料之利用者,並監管所有的資料共享計畫,以及提供諮詢、指導和倡導資料共享計畫的最佳方案。
今(2018)年2月,一家成立於2013年、位於美國維吉尼亞州的雲端策略服務公司REAN Cloud Llc.以其他交易(Other Transaction, OT)模式獲得了美國國防部(Department of Defense)5年合計9.5億美金的合約,讓OT自2016年10 U.S. Code §2371b正式生效進一步確認美國國防部針對原型(Prototype)及其後續之產品開發適用OT以來[1],再次引起討論。 OT源於冷戰時期的美國,主要用於讓聯邦政府部門取得尖端國防技術的研究與發展(Research and Development, R & D)成果和原型。OT並非傳統之契約(contract)、授權書(grant)或合作協議(cooperative agreement),且法並無明確定義OT究竟實質內容為何。OT不受聯邦併購規則(Federal Acquisition Regulation, FAR)所規範,更接近一般私人商業契約,因此具備極大的合作彈性,可大幅度縮短私部門與政府合作常碰到的冗長時程。由於OT快速、彈性的這兩項特質,近年來應用於國防以外之新創或尖端科技之公私合作亦逐漸普遍。 然OT雖然簡化了政府採購的時程與限制,但同時也減少了問責可能性和透明度,因此目前只限具備美國國會授予其他交易授權(Other Transaction Authority, OTA)的聯邦政府機構得以使用OT。在美國計有太空總署(NASA)、美國國防部、美國聯邦航空總署(Federal Aviation Administration)、美國運輸部(Department of Transportation)、國土安全部(Department of Homeland Security)、運輸安全管理局(Transportation Security Administration)、衛生與公共服務部(Department of Health and Human Services)、美國能源部(Department of Energy)獲得國會授予OTA,其餘未獲OTA之政府部門僅得以在聯邦預算管理局(Office of Management and Budget)主任授權下有條件地使用OT。 尖端技術的R&D在不同領域皆有其特殊性,難以一體適用FAR,是以OT在實務運作上為兼顧持有尖端技術的公司重視速度和營業秘密之特質與採購之公平性,其運作模式通常為:聯邦政府成立某種技術領域的OT聯盟(consortium),私部門的潛在締約者可以申請加入,繳交會費並同意該聯盟的約定條款。聯盟之約定條款通常較政府採購契約來的有彈性,例如智慧財產權的歸屬是以個案個別約定。擁有OTA之政府機關嗣後可向聯盟成員徵求產品或服務白皮書,之後再從中挑選優秀者進一步繳交更詳細的產品或服務計畫書,最終經由聯盟管理機構(consortium management organization)挑選出最適者。 OT與OT聯盟的運作模式,為公私合作提供極大的法律彈性,且非常迅速。平均而言,從政府徵求白皮書到成功找到最適者,不過兩個月時間。時間與彈性乃是新創企業或尖端技術持有者與政府合作時最有疑慮之處,OT可以解決此一問題。然需注意OT在適用上仍存在諸多挑戰,例如成效難以評估、較不透明導致監督困難、智慧財產權歸屬爭議等,有待克服。 [1] 美國國防部在此前乃是遵循Section 845 of the National Defense Authorization Act(NDAA) for Fiscal Year(FY) 1994, Public Law 103-160適用OT。
美國國家公路交通安全管理局公布車輛網路安全最佳實踐,呼籲業界遵循美國國家公路交通安全管理局(National Highway Traffic Safety Administration, NHTSA)於2022年9月9日公布2022年最新版本之當代車輛網路安全最佳實踐(Cybersecurity Best Practices for the Safety of Modern Vehicles),強化政府對先進聯網車輛網路安全之把關。 文件將網路安全實踐項目區分為「一般網路安全最佳實踐」及「車輛技術網路安全最佳實踐」兩塊,前者主要為公司整體組織網路安全文化與監管機制之建立;後者則偏重於技術性的建議內涵。 「一般網路安全最佳實踐」共有45項要點,核心概念為:公司應訂定明確的網路安全評估程序,由領導階層負責相關監督責任,定期執行網路安全之風險評估及第三方公正稽核,並對其所發現之風險弱點採取保護措施並持續監控,同時應妥善保存所有網路安全相關之紀錄文件,並鼓勵與車輛同業聯盟彼此分享學習經驗。對於組織成員應適當提供網路安全教育訓練。於產品設計時,應將產品使用者、售後服務維修商,以及可能的外接式電子設備所帶來之風險一併納入安全設計考量。 「車輛技術網路安全最佳實踐」共有25項,核心理念為:對於產品開發人員,應建立存取權限管理,避免有心人士濫用權限。產品所使用的加密技術應隨時更新,若車輛具備診斷功能,應慎防遭到不當利用,且應防止車輛所搭載之感測器遭到惡意干擾或改動,感測器所收集到之資料則應能免於網路攻擊或竊取。應特別注意無線網路設備、空中軟體更新(Over-the-air, OTA)以及公司作業軟體所產生之風險漏洞。 本文件屬於自願性質,無法律強制力。但NHTSA期望在現有的車輛產業網路安全標準上,例如國際標準組織與國際汽車工程師協會(International Standards Organization, ISO/SAE International, SAE)先前所訂定的車輛網路安全標準ISO/SAE 21434的基礎前提下,進一步提出政府對車輛網路安全要求的努力。
專利戰爭:柯達告蘋果與宏達電 侵犯影像專利伊士曼柯達(Eastman Kodak)於1月10日向美國紐約州羅徹斯特(Rochester)聯邦法院與國際貿易委員會(ITC)提起訴訟,控告蘋果、宏達電侵犯5項有關數位相機影像處理之專利,意圖以法律訴訟作為擴大專利權價值的手段。 目前擁有超過1000項影像技術專利的131歲老店柯達,試圖出售1000多項專利權及提出專利訴訟,以挽回面臨破產邊緣的危機。柯達認為蘋果侵犯4項和數位相機影像相關專利(美國專利字號7,210,161、7,742,084、7,453,605、7,936,391),其中包含使用者可直接透過網路或e-mail傳送相機內照片的技術。而宏達電除被控侵犯上述4項專利之餘,柯達亦向國際貿易委員會申訴宏達電侵犯第5項的影像預覽技術專利(美國專利字號6,292,218),之前柯達方以該專利起訴蘋果和RIM。柯達要求蘋果立即停售侵權產品,同時支付3倍損失賠償。相關人士表示,柯達一直在尋找願意買下該公司影像專利的業者,起訴科技龍頭舉動之目的在於尋求好買家。 除此之外,柯達亦宣布進行業務重組,從3個部門合併成為2個部門,雖然對外宣稱乃為節省成本開支、盼能轉虧為盈,不過在可能破產的疑慮下,柯達內部氣氛相當低迷,出售技術專利仍無進展,加上大批主管相繼離職,過去兩周有3位董事辭職,上周四CCO(Chief Communications Officer)Gerard Meuchner宣佈離職之後,開始傳言柯達募資未成,未來數周可能就會宣布破產。
合成資料(synthetic data)「合成資料」(synthetic data)的出現,是為了保護原始資料所可能帶有的隱私資料或機敏資料,或是因法規或現實之限制而無法取得或利用研究所需資料的情況下,透過統計學方法、深度學習、或自然語言處理等方式,讓電腦以「模擬」方式生成研究所需之「合成資料」並進行後續研究跟利用,透過這個方法,資料科學家可以在無侵犯隱私的疑慮下,使合成資料所訓練出來的分類模型(classifiers)不會比原始資料所訓練出來的分類模型差。 在合成資料的生成技術當中,最熱門的研究為運用「生成對抗網路」(Generative Adversarial Network, GAN)形成合成資料(亦有其他生成合成資料之方法),生成對抗網路透過兩組類神經網路「生成網路」(generator)與辨識網路(discriminator)對於不同真偽目標值之反覆交錯訓練之結果,使其中一組類神經網路可生成與原始資料極度近似但又不完全一樣之資料,也就是具高度複雜性與擬真性而可供研究運用之「合成資料」。 英國國防科技實驗室(Defense Science and Technology Laboratory, DSTL)於2020年8月12日發布「合成資料」技術報告,此技術報告為DSTL委託英國航太系統公司(BAE Systems)的應用智慧實驗室(Applied Intelligence Labs, AI Labs)執行「後勤科技調查」(Logistics Technology Investigations, LTI)計畫下「資料科學與分析」主題的工作項目之一,探討在隱私考量下(privacy-preserving)「合成資料」當今技術發展情形,並提供評估技術之標準與方法。 技術報告中指出,資料的種類多元且面向廣泛,包含數字、分類資訊、文字與地理空間資訊等,針對不同資料種類所適用之生成技術均有所不同,也因此對於以監督式學習、非監督式學習或是統計學方法生成之「合成資料」需要採取不同的質化或量化方式進行技術評估;報告指出,目前尚未有一種可通用不同種類資料的合成資料生成技術或技術評估方法,建議應配合研究資料種類選取合適的生成技術與評估方法。