澳大利亞提出政府資料共享法案

  澳大利亞總理及內閣部(The Department of the Prime Minister and Cabinet,PM&C)之國家資料委員辦公室(Office of the National Data Commissioner)於2020年12月9日提交「澳大利亞資料可用性及透明度法案」(Data Availability and Transparency Bill 2020)至澳大利亞國會(Parliament of Australia),國會並已完成一讀及二讀 。

  該法案旨在建立一個新的公部門資料共享方案,將原先未開放的公部門資料,透過本法案所設計的共享公部門資料相關管理制度,以促進公部門資料的可存取性及保障措施的一致性,藉此提高公部門資料透明度和大眾利用公部門資料的信心。

  該法案所設計的資料共享機制,係由作為「資料保管者」(Data custodians)的各聯邦部門和州政府,自行或透過「被認證的資料服務提供者」(Accredited data service provider,下稱ADSP)共享其所保管的政府資料,使「被認證的利用者」(Accredited user,下稱利用者)得以利用之。

  另外,該法案要求資料保管者必須在符合資料共享要件的情況下,才能共享資料,要件包含:

1、資料共享目的:係指該法案只允許資料保管者基於「提供政府服務」、「通知政府政策和計畫」、「研究與開發」等三個目的分享資料。倘涉及國家安全及犯罪調查等需要特殊監督利用機制的政府資料,則不包含在內。

2、資料共享原則:包含符合公共利益或道德評估之計畫;具備適合共享資格的人員;安全環境;資料最小化;合目的產出等五個原則。

3、資料共享協議:資料保管者與利用者之間,必須簽定「資料共享協議」,該法案有規定資料共享協議的應記載條款。

  滿足上述要求時,該法案使原先被法律限制共享,或單純未積極開放的資料,都得以在利用者提出要求後,於符合要件及資訊保密相關法規後共享。反之,若不符合法案的要求,則不得共享資料,回復到原先的法律狀態,適用原先的資料保護框架。

  最後,該法案授權獨立監管機構「國家資料委員」(National Data Commissioner),負責認證ADSP及可利用共享資料之利用者,並監管所有的資料共享計畫,以及提供諮詢、指導和倡導資料共享計畫的最佳方案。

相關連結
相關附件
你可能會想參加
※ 澳大利亞提出政府資料共享法案, 資訊工業策進會科技法律研究所, https://stli.iii.org.tw/article-detail.aspx?d=8657&no=67&tp=1 (最後瀏覽日:2026/01/25)
引註此篇文章
你可能還會想看
通用人工智慧的透明揭露標準--歐盟通用人工智慧模型實踐準則「透明度 (Transparency)」章

通用人工智慧的透明揭露標準--歐盟通用人工智慧模型實踐準則「透明度 (Transparency)」章 資訊工業策進會科技法律研究所 2025年08月06日 歐盟人工智慧辦公室(The European AI Office,以下簡稱AIO) 於2025年7月10日提出《人工智慧法案》(AI Act, 以下簡稱AIA法案)關於通用型人工智慧實作的準則[1] (Code of Practice for General-Purpose AI Models,以下簡稱「GPAI實踐準則」),並於其中「透明度 (Transparency)」章節[2],針對歐盟AIA法案第53條第1項(a)、(b)款要求GPAI模型的提供者必須準備並提供給下游的系統整合者 (integrator) 或部署者 (deployer) 足夠的資訊的義務,提出模型文件(Model Documentation)標準與格式,協助GPAI模型提供者制定並更新。 壹、事件摘要 歐盟為確保GPAI模型提供者遵循其AI法案下的義務,並使AIO能夠評估選擇依賴本守則以展現其AI法案義務合規性的通用人工智慧模型提供者之合規情況,提出GPAI實踐準則。當GPAI模型提供者有意將其模型整合至其AI系統的提供者(以下稱「下游提供者」)及應向AIO提供相關資訊,其應依透明度章節要求措施(詳下述)提出符合內容、項目要求的模型文件,並予公開揭露且確保已記錄資訊的品質、安全性及完整性 (integrity)。 由於GPAI模型提供者在AI價值鏈 (AI value chain) 中具有特殊角色和責任,其所提供的模型可能構成一系列下游AI系統的基礎,這些系統通常由需要充分了解模型及其能力的下游提供者提供,以便將此類模型整合至其產品中並履行其AIA法案下的義務。而相關資訊的提供目的,同時也在於讓AIO及國家主管機關履行其AI法案職責,特別是高風險AI的評估。 AIO指出完整填寫與定期更新模型文件,是履行AIA法案第53條義務的關鍵步驟。GPAI模型提供者應建立適當的內部程序,確保資訊的準確性、時效性及安全性。模型文件所含資訊的相關變更,包括同一模型的更新版本,同時保留模型文件的先前版本,期間至模型投放市場後10年結束。 貳、重點說明 一、制定並更新模型文件(措施1.1) 透明度 (Transparency)章節提供模型文件的標準表格,做為GPAI實踐準則透明度章節的核心工具,協助GPAI模型提供者有系統性的整理並提供AIA法案所要求的各項資訊。表格設計考量了不同利害關係人的資訊需求,確保在保護商業機密的同時,滿足監管透明度的要求。 前揭記錄資訊依其應提供對象不同,各欄位已有標示區分該欄資訊係用於AI辦公室 (AIO)、國家主管機關 (NCAs) 或下游提供者 (DPs)者。適用於下游提供者的資訊,GPAI模型提供者應主動提供(公開揭露),其他則於被請求時始須提供(予AIO或NCAs)。 除基本的文件最後更新日期與版本資訊外,應提供的資訊分為八大項,內容應包括: (一)、一般資訊General information 1.模型提供者法律名稱(Legal name) 2.模型名稱(Model name):模型的唯一識別碼(例如 Llama 3.1-405B),包括模型集合的識別碼(如適用),以及模型文件涵蓋之相關模型公開版本的名稱清單。 3.模型真實性(Model authenticity):提供明確的資訊例如安全雜湊或URL端點,來幫助使用者確認這個模型的來源 (Provenance)、是否真實性未被更動 (Authenticity)。 4.首次發布日(Release date)與首次投放歐盟市場的日期(Union market release date)。 5.模型依賴(Model dependencies):若模型是對一個或多個先前投放市場的GPAI模型進行修改或微調的結果,須列出該等模型的名稱(及相關版本,如有多個版本投放市場)。 (二)、模型屬性(Model properties) 1.Model architecture 模型架構:模型架構的一般描述,例如轉換器架構 (transformer architecture)。 2.Design specifications of the model 模型設計規格:模型主要設計規格的一般描述,包括理由及所作假設。 3.輸出/入的模式與其最大值(maximum size):說明係文字、影像、音訊或視訊模式與其最大的輸出/入的大小。 4.模型總參數量(model size)與其範圍(Parameter range):提供模模型參數總數,記錄至少兩個有效數字,例如 7.3*10^10 參數,並勾選參數(大小)所在範圍的選項,例如:☐>1T。 (三)、發佈途徑與授權方式(Methods of distribution and licenses) 1.發佈途徑Distribution channels:列舉在歐盟市場上使用模型的採用法,包括API、軟體套裝或開源倉庫。 2.授權條款License:附上授權條款鏈結或在要求時提供副本;說明授權類型如: 開放授權、限制性授權、專有授權;列出尚有提供哪些相關資源(如訓練資料、程式碼)與其存取方式、使用授權。 (四)、模型的使用(Use) 1.可接受的使用政策Acceptable Use Policy:附上可接受使用政策連結或副本或註明無政策。 2.預期用途或限制用途Intended uses:例如生產力提升、翻譯、創意內容生成、資料分析、資料視覺化、程式設計協助、排程、客戶支援、各種自然語言任務等或限制及/或禁止的用途。 3.可整合AI系統之類型Type and nature of AI systems:例如可能包括自主系統、對話助理、決策支援系統、創意AI系統、預測系統、網路安全、監控或人機協作。 4.模型整合技術方式Technical means for integration:例如使用說明、基礎設施、工具)的一般描述。 5.所需軟硬體資源Required hardware與software:使用模型所需任何軟硬體(包括版本)的描述,若不適用則填入「NA」。 (五)、訓練過程(Training process) 1.訓練過程設計規格(Design specifications of the training process):訓練過程所涉主要步驟或階段的一般描述,包括訓練方法論及技術、主要設計選擇、所作假設及模型設計最佳化目標,以及不同參數的相關性(如適用)。例如:「模型在人類偏好資料集上進行10個輪次的後訓練,以使模型與人類價值觀一致,並使其在回應使用者提示時更有用」。 2.設計決策理由(Decision rationale):如何及為何在模型訓練中做出關鍵設計選擇的描述。 (六)、用於訓練、測試及驗證的資料資訊(Information on the data used for training, testing, and validation) 1.資料類型樣態Data type/modality:勾選樣態包括文字、影像、音訊、視訊或說明有其他模態。 2.資料來源Data provenance:勾選來源包括網路爬蟲、從第三方取得的私人非公開資料集、使用者資料、公開資料集、透過其他方式收集的資料、非公開合成(Synthetic )資料等。 3.資料取得與選取方式(How data was obtained):取得及選擇訓練、測試及驗證資料使用方法的描述,包括用於註釋資料的方法及資源,以及用於生成合成資料的模型及方法。從第三方取得的資料,如果權利取得方式未在訓練資料公開摘要中披露,應描述該方式。 4.資料點數量Number of data points:說明訓練、測試及驗證資料的大小(資料點數量),連同資料點單位的定義(例如代幣或文件、影像、視訊小時或幀)。 5.資料範疇與特性(Scope and characteristics):指訓練、測試及驗證資料範圍及主要特徵的一般描述,如領域(例如醫療保健、科學、法律等)、地理(例如全球、限於特定區域等)、語言、模式涵蓋範圍。 6.資料清理處理方法(Data curation methodologies):指將獲取的資料轉換為模型訓練、測試及驗證資料所涉及的資料處理一般描述,如清理(例如過濾不相關內容如廣告)、資料擴增。 7.不當資料檢測措施(Measures for unsuitability):在資料獲取或處理中實施的任何方法描述(如有),以偵測考慮模型預期用途的不適當資料源,包括但不限於非法內容、兒童性虐待材料 (CSAM)、非同意親密影像 (NCII),以及導致非法處理的個人資料。 8.可識別偏誤檢測措施(Measures to detect identifiable biases):描述所採取的偵測與矯正訓練資料存在偏誤的方法。 (七)、訓練期間的計算資源(Computational resources (during training)) 1.訓練時間(Training time):所測量期間及其時間的描述。 2.訓練使用的計算量(Amount of computation used for training):說明訓練使用的測量或估計計算量,以運算表示並記錄至其數量級(例如 10^24 浮點運算)。 3.測量方法論(Measurement methodology):描述用於測量或估計訓練使用計算量的方法。 (八)、訓練及推論的能源消耗(Energy consumption (during training and inference)) 1.訓練耗能(Amount of energy used for training)及其計量方法:說明訓練使用的測量或估計能源量,以百萬瓦時表示(例如 1.0x10^2 百萬瓦時)。若模型能源消耗未知,可基於所使用計算資源的資訊估計能源消耗。若因缺乏計算或硬體提供者的關鍵資訊而無法估計訓練使用能源量,提供者應披露所缺乏的資訊類型。 2.推論運算耗能的計算基準 (Benchmarked amount of computation used for inference1)及其方法:以浮點運算表示方式(例如 5.1x10^17 浮點運算)說明推論運算的基準計算量,並提供計算任務描述(例如生成100000個代幣Token)及用於測量或估計的硬體(例如 64個Nvidia A100)。 二、提供GPAI模型相關資訊(措施1.2) 通用人工智慧模型投放市場時,應透過其網站或若無網站則透過其他適當方式,公開揭露聯絡資訊,供AIO及下游提供者請求取得模型文件中所含的相關資訊或其他必要資訊,以其最新形式提供所請求的資訊。 於下游提供者請求時,GPAI模型提供者應向下游提供者提供最新模型文件中適用於下游提供者的資訊,在不影響智慧財產權及機密商業的前提下,對使其充分了解GPAI模型的能力及限制,並使該等下游提供者能夠遵循其AIA法案義務。資訊應在合理時間內提供,除特殊情況外不得超過收到請求後14日。且該資訊的部分內容可能也需要以摘要形式,作為GPAI模型提供者根據AIA法案第53條第1項(d)款必須公開提供的訓練內容摘要 (training content summary) 的一部分。 三、確保資訊品質、完整性及安全性(措施1.3) GPAI模型提供者應確保資訊的品質及完整性獲得控制,並保留控制證據以供證明遵循AIA法案,且防止證據被非預期的變更 (unintended alterations)。在制定、更新及控制資訊及記錄的品質與安全性時,宜遵循既定協議 (established protocols) 及技術標準 (technical standards)。 參、事件評析 一、所要求之資訊完整、格式標準清楚 歐盟AGPAI實踐準則」的「透明度 (Transparency)」提供模型文件的標準表格,做為GPAI實踐準則透明度章節的核心工具,從名稱、屬性、功能等最基本的模型資料,到所需軟硬體、使用政策、散佈管道、訓練資料來源、演算法設計,甚至運算與能源消秏等,構面完整且均有欄位說明,而且部分欄位直接提供選項供勾選,對於GPAI模型提供者提供了簡明容易的AIA法案資訊要求合規做法。 二、表格設計考量不同利害關係人的資訊需求 GPAI實踐準則透明度章節雖然主要目的是為GPAI模型提供者對由需要充分了解模型及其能力的下游提供者提供資訊,以便其在產品履行AIA法案下的義務。但相關資訊的提供目的,同時也在於讓AIO及國家主管機關履行其AI法案職責,特別是高風險AI的評估。因此,表格的資訊標示區分該欄資訊係用於AI辦公室 (AIO)、國家主管機關 (NCAs) 或下游提供者 (DPs)者,例如模型的訓練、資料清理處理方法、不當內容的檢測、測試及驗證的資料來源、訓練與運算的能秏、就多屬AIO、NCAs有要求時始須提供的資料,無須主動公開也兼顧及GPAI模型提供者的商業機密保護。 三、配套要求公開並確保資訊品質 該準則除要求GPAI模型提供者應記錄模型文件,並要求於網站等適當地,公開提供下游提供者請求的最新的資訊。而且應在不影響智慧財產權及機密商業的前提下,提供其他對使其充分了解GPAI模型的能力及限制的資訊。同時,為確保資訊的品質及完整性獲得控制,該準則亦明示不僅應落實且應保留證據,以防止資訊被非預期的變更。 四、以透明機制落實我國AI基本法草案的原則 我國日前已由國科會公告人工智慧基本草案,草案揭示「隱私保護與資料治理」、「妥善保護個人資料隱私」、「資安與安全 」、「透明與可解釋 」、「公平與不歧視」、「問責」原則。GPAI實踐準則透明度章節,已提供一個重要的啟示—透過AI風險評測機制,即可推動GPAI模型資訊的揭露,對相關資訊包括訓練資料來源、不當內容防止採取做一定程度的揭露要求。 透過相關資訊揭露的要求,即可一定程度促使AI開發提供者評估認知風險,同時採取降低訓練資料、生成結果侵權或不正確的措施。即便在各領域作用法尚未能建立落實配套要求,透過通過評測的正面效益,運用AI風險評測機制的資訊提供要求,前揭草案揭示的隱私、著作、安全、問責等原則,將可以立即可獲得一定程度的實質落實,緩解各界對於AI侵權、安全性的疑慮。 本文為資策會科法所創智中心完成之著作,非經同意或授權,不得為轉載、公開播送、公開傳輸、改作或重製等利用行為。 本文同步刊登於TIPS網站(https://www.tips.org.tw) [1]The European AI Office, The General-Purpose AI Code of Practice, https://digital-strategy.ec.europa.eu/en/policies/contents-code-gpai 。(最後閱覽日:2025/07/30) [2]The European AI Office, Code of Practice for General-Purpose AI Models–Transparency Chapter, https://ec.europa.eu/newsroom/dae/redirection/document/118120 。(最後閱覽日:2025/07/30)

從無形資本於全球價值鏈中角色談智慧財產權對經濟之影響

從無形資本於全球價值鏈中角色談智慧財產權對經濟之影響 資訊工業策進會科技法律研究所 法律研究員 許椀婷 107年03月01日 壹、背景說明   現代訊息和通訊、運輸等科技技術的發達,以及各國為促進經濟發展採取之自由貿易政策興盛,使進行國際貿易的成本下降,導致分散多地點生產的成本效益提升,促成全球價值鏈之興起,我國出口以臺灣接單、海外生產之模式,即為全球價值鏈之實踐。全球價值鏈是為實現商品或服務價值,而連結生產、銷售等過程的全球性跨企業網絡,涉及從最初的原料採購和運輸、半成品及成品的生產和分銷、直至最終到消費端和回收處理的整個過程。全球化下各產品供應鏈或全球價值鏈的每一個階段,都涵蓋越來越多無形資本的投入,所謂無形資本為無法觸及的東西,包括外觀、感覺、功能和產品的吸引力等等,對市場的成功與否產生影響。世界智慧財產權組織(World Intellectual Property Organization, WIPO)2017年11月WIPO發布的世界智慧財產權報告(World Intellectual Property Report, WIPR),首次針對無形資本創造的價值進行評估,報告顯示於世界各地流通銷售的產品中,近三分之一來自於無形資本,如品牌、設計和技術[1],因為智財經常用於保護無形資本,連帶展現智財作用影響力的擴大。藉由觀察報告可了解智慧財產權在無形資本創造附加價值中所扮演的角色,及對於這些資本的回報。 貳、無形資本於全球價值鏈中之角色   1992年宏碁電腦董事長施振榮提出產業發展策略:微笑曲線(smile curve)概念,將企業透過營運產生附加價值之過程分為左、中、右三段,左段為技術、專利,中段為組裝、製造,右段為品牌、服務,曲線看起來像微笑符號是因為中段位置附加價值較低,而在左右兩段附加價值較高,意即要增加企業附加價值,需要發展提升左右端幅度。[2]1970年到2017年全球價值鏈下附加價值之變動,左右二階段的幅度有顯著提升,反映技術、設計、品牌價值、技能和管理知識,也就是無形資本,在動態競爭市場中變得至關重要。[3]企業需不斷對無形資本進行投資,以保持領先。報告區分無形資本為知識型:技術、設計及管理相關訣竅,以及聲譽型:品牌、形象。知識型資本在國際間流動時受各種智慧財產權影響,如專利、工業設計、著作權和營業秘密等。[4]而聲譽型資本是企業於市場成功與否的關鍵,影響產品在全球價價值鏈的分佈。據統計,2000年到2014年無形資本平均占全球製造銷售的所有產品總值的30.4%,[5]等同於消費者所購買之產品有近三分之一的價值由品牌、外觀設計和技術等無形資本所創造。 參、無形資本之智慧財產權的價值創造   WIPO之WIPR報告指出,全球與跨境智慧財產權交易相關的利潤轉移可達約每年1,200億美元。[6]利潤轉移模式一般而言主要於高稅率國家企業發展、提升、維護和保護之智財,往低稅率國家關係企業進行銷售,可藉以在仍保智財持有的情況下,縮減風險,並能再對其他高稅率國家企業進行授權來獲利;如在美國,研發密集型企業傾向於藉由外國子公司流通無形資本,達減稅方面作用。[7]為獲得上述利益,企業對智慧財產權的投資與管理重要性顯而易見。在WIPR報告中對於太陽能光電系統案例分析中,展現有效規劃管理智慧財產權所創造的商業效益之成功案例,中國藉由收購技術、專業人力取得競爭優勢,並以商標增加產品區隔,成就品牌價值,使最初進行光電系統研發的高收入國家在已不受專利保護下,技術漸轉移到新興經濟體,最終受到取代。該案例除充分顯示積極購買、延續智財長期下的效益,亦強調對於製造技術初始的智財防護及維護之重要性。[8] 肆、結論   綜上述,無形資本於全球價值鏈中重要性的提升,連帶智慧財產權對全球經濟產生影響,不僅是智慧財產權流動時所創造的金流,授權時促成的收購及合資等合作關係、技術人員流動進而擴散移轉智慧財產權,都牽動著全球經濟的變化。因仰賴進口及出口競爭力弱化,我國於全球價值鏈體系參與度減少,製造業使用進口原物料比重高,國內產出附加價值相對小。國內產業偏向使用壓縮成本的生產策略,導致實質GDP雖然成長,生產品價格GDP平減指數卻是下降的。[9]要提升國內產出附加價值,我國政府應重視促進對無型資本投資意願之相關措施,涵蓋對於智慧財產權之掌握與管控,以利產出附加價值之提升。智慧財產權對企業無形資產的影響包括使企業長保領先優勢、產生超額利潤、避免受競爭對手模仿等等,藉以發展企業核心競爭力。企業對智慧財產權的管理及運用模式,決定企業發展核心競爭力的成本以及風險。為促使產業能了解智慧財產權的價值所在,進而提升投資無形資本意願,需以政府公共政策之力量導引企業對智慧財產權的運用和管理,據此帶動企業智慧財產權增值。如可以銀行等金融機構為先導示範,開展智慧財產權領域相關的貸款投資,擴增企業對智慧財產權之運用模式。並配合產業發展政策調整智慧財產權申請、利用、管理等相關法制配套,如此一來,便能有效協助降低智慧財產權的管理成本,增進生產利潤。 [1] WORLD INTELLECTUAL PROPERTY ORGANIZATION, WORLD INTELLECTUAL PROPERTY REPORT 2017 – INTANGIBLE CAPITAL IN GLOBAL VALUE CHAINS 11 (2017). [2]施振榮、林文玲,《再造宏碁:開創、成長與挑戰》,天下文化,第二版,頁286(2004)。 [3] WORLD INTELLECTUAL PROPERTY ORGANIZATION WORLD INTELLECTUAL PROPERTY REPORT 2017 – INTANGIBLE CAPITAL IN GLOBAL VALUE CHAINS 10 (2017). [4] WORLD INTELLECTUAL PROPERTY ORGANIZATION [WIPO], World Intellectual Property Report 2017-Intangible Capital in Global Value Chains (2017), at 30-31, http://www.wipo.int/edocs/pubdocs/en/wipo_pub_944_2017.pdf (last visited Dec. 15, 2017) [5] WORLD INTELLECTUAL PROPERTY ORGANIZATION [WIPO], World Intellectual Property Report 2017-Intangible Capital in Global Value Chains (2017), at 11, http://www.wipo.int/edocs/pubdocs/en/wipo_pub_944_2017.pdf (last visited Dec. 15, 2017) [6] WORLD INTELLECTUAL PROPERTY ORGANIZATION [WIPO], World Intellectual Property Report 2017-Intangible Capital in Global Value Chains (2017), at 32, http://www.wipo.int/edocs/pubdocs/en/wipo_pub_944_2017.pdf (last visited Dec. 15, 2017) [7] Id. [8] WORLD INTELLECTUAL PROPERTY ORGANIZATION [WIPO], World Intellectual Property Report 2017-Intangible Capital in Global Value Chains (2017), at 71-90, http://www.wipo.int/edocs/pubdocs/en/wipo_pub_944_2017.pdf (last visited Dec. 15, 2017) [9]林依伶、楊子霆,〈經濟成長、薪資停滯?初探台灣實質薪資與勞動生產力成長脫勾之成因〉(2017)。

美國商務部取消對來自敏感國家之外國科學家使用部分研究設備之限制

  911 恐怖攻擊以來,美國持續加強國土安全保護,而為保障國家安全及科技競爭力,美國商務部( US Department of Commerce )原本打算制定安全管制規定, 對來自敏感國家之外國科學家, 限制其 使用部分的實驗研究設備。所謂敏感國家( countries of concern ),包括巴基斯坦、印度、俄羅斯及中國,來自於這些國家的科學研究人員若要在美國境內的從事特定實驗研究,因而需要使用特定設施設備者(主要是可用於軍事用途者),不論研究設施設備是屬於聯邦或民間所有,在開始操作、進行安裝、維護與修繕等之前,必須先向美國政府提出申請始可近用。   現行美國有關技術管制規定主要係針對敏感科技的出口,商務部自 2004 年起,即打算推動修正此等規定,進一步將部分可用於軍事用途之研究設施設備予以立法管制,從美國政府所公布的管制清單來看,其涵蓋範圍甚廣,從化學、雷射到細菌培養等各領域之研究設施設備,均涵蓋在內,故商務部此項修法計畫一經公開,立即震撼外界,除學術界及產業界強烈外抨擊,就連聯邦實驗室也大表反對。反對意見多認為,預計的修正規定將會破壞大學校園中之開放精神,影響科學自由的研究環境;而研究設施設備近用之事前許可制,亦將造成學界與業界的負擔;甚至可能阻礙未來大學或業界延攬外國科技人才參與研究計畫之進行,長期而言,實將會戕害美國的國際競爭力。   面對各界反對聲浪,為避免降低研究型企業之生產力,美國商務部在今年 5 月底宣布取消原來的立法管制計畫,不過,商務部將會召集產學研各界專家,組成一個十二人的委員會,持續就實驗室安全管制的問題交換意見,期能獲致更有效之解決之道。

下一個要控告的是…其它所有公司?

  Eolas,一家由加州大學資助成立的軟體技術研發公司,於1999年控告微軟侵犯了一個關於瀏覽器技術的專利 – US 5,838,906。該專利所揭露的技術讓微軟的IE瀏覽器得以嵌入互動式內容的外掛(plug-in)程式。2003年,美國芝加哥法院認定微軟侵犯906專利,並判決微軟必需賠償Eolas及加州大學5.21億美元。2007年,微軟終於暫時與Eolas達成和解,但兩家公司都不願透漏和解的內容。     美西時間2009年10月6日上午,Eolas大動作地控告包含科技業的Adobe、Amazon、Apple、eBay、Google、Sun Microsystems、Texas Instruments、Yahoo、YouTube,以及非科技業的Citigroup、JPMorgan Chase …等共22家公司,侵犯上述906專利以及其所衍生的US 7,599,985專利。Eolas表示:「985專利是 906專利的延續,其所揭露的技術能讓網站透過附加元件和Ajax網頁開發技術的使用,為其線上服務加入完全互動式的嵌入應用軟體。」     此外,Eolas總裁Michael Doyle博士也表示:「我們只想獲得公平的對待。本公司在15年前就已經研發並廣泛的展示這些技術。使用本公司的技術來營利且未付出合理報酬的情形對本公司並不公平。」 至於被控告的大多數公司目前都尚未做出正式的回應。

TOP