美國佛羅里達州於2021年07月正式開放低速自駕貨車得於道路上行駛

  隨著新冠肺炎(COVID-19)帶來的影響,以及自動駕駛車輛(Autonomous Vehicle,下稱自駕車,自動駕駛稱為自駕)應用情境發展,美國佛羅里達州(State of Florida,下稱佛州)自2021年07月01日起正式讓低速自駕貨車(Low-Speed Autonomous Delivery Vehicle)可於其境內道路上行駛。

  美國佛州首先在其州法典(Florida Statutes)有關全州統一性之車輛定義中,新增低速自駕貨車之定義,即配備毋須人類駕駛之自駕系統,且非設計作為載客運輸之車輛;此外,其須符合聯邦法規法典(Code of Federal Regulation, CFR)定義中之低速車輛(Low-Speed Vehicle),且須配備頭燈、剎車燈、方向燈、尾燈、反光設備以及車輛識別號碼,但不適用於該州其他低速車輛相關限制法規。惟如相關規定有與國家公路交通安全管理局(National Highway Traffic Safety Administration,即NTHSA)另外採用之聯邦規範相衝突時,則依NTHSA採用之規範。

  此外,在該州法典亦明示低速自駕貨車在其境內道路上行駛之限制與條件:

1.低速自駕貨車原則僅能在速限低於時速為35英里以下之道路或街道上行駛。(但如該道路與速限超過時速35英里者相交,亦不影響低速自駕貨車穿越該相交路口)

2.低速自駕貨車在以下特定情形,可於速限為時速45英里以下之道路或街道上行駛:

(1)低速自駕貨車在該等路段不會連續行駛超過1英里,不過該等路段之管轄單位有權針對連續行駛超過1英里的部分裁量是否放寬限制。

(2)低速自駕貨車並非為了轉向目的而獨立地在右側車道上行駛。

(3)在低速自駕貨車行駛於兩線道的道路或街道上,且後方有5輛以上的車輛時,後方車輛倘若因超車而可能駛入對向車道,或可能導致其他非安全之情境下,低速自駕貨車可在有充分安全駛離之處,自該兩線道的道路或街道駛離至限為時速45英里以下之道路或街道,以利後方車輛得繼續行駛。

3.低速自駕貨車之所有人、其遙控系統(Teleoperation System)之所有人、遠端操作人員(Remote Human Operator)或前開人員之組合式,必須為低速自駕貨車投保符合州法典明文之自駕車相關保險。

相關連結
相關附件
※ 美國佛羅里達州於2021年07月正式開放低速自駕貨車得於道路上行駛, 資訊工業策進會科技法律研究所, https://stli.iii.org.tw/article-detail.aspx?d=8692&no=67&tp=1 (最後瀏覽日:2025/12/13)
引註此篇文章
你可能還會想看
歐盟議會發布《可信賴人工智慧倫理準則》

  2019年4月9日,歐盟議會發布《可信賴人工智慧倫理準則》(Ethics Guidelines for Trustworthy AI)。此次內容大致延續歐盟人工智慧高階專家小組(High-level Expert Group on Artificial Intelligence)於2018年12月18日發布的《可信賴人工智慧倫理準則草案》(Draft Ethics Guidelines for Trustworthy Artificial Intelligence)之內容,要求人工智慧須遵守行善(do good)、不作惡(do no harm)、保護人類(preserve human Agency)、公平(be fair)與公開透明(operate transparency)等倫理原則;並在4月9日發布的正式內容中更加具體描述可信賴的人工智慧的具體要件,共計七面向概述如下: 人類自主性和監控(Human agency and oversight):AI係為強化人類能力而存在,使人類使用者能夠做出更明智的決策並培養自身的基礎能力。同時,AI應有相關監控機制以確保AI系統不會侵害人類自主性或是引發其他負面效果。本準則建議,監控機制應可透過人機混合(一種整合人工智慧與人類協作的系統,例如human-in-the-loop, human-on-the-loop, and human-in-command)的操作方法來實現。 技術穩健性和安全性(Technical Robustness and safety):為防止損害擴張與確保損害最小化,AI系統除需具備準確性、可靠性和可重複性等技術特質,同時也需在出現問題前訂定完善的備援計劃。 隱私和資料治理(Privacy and data governance):除了確保充分尊重隱私和資料保護之外,還必須確保適當的資料治理機制,同時考慮到資料的品質和完整性,並確保合法近用資料為可行。 透明度(Transparency):資料、系統和AI的商業模型應該是透明的。可追溯性機制(Traceability mechanisms)有助於實現這一目標。此外,應以利害關係人能夠理解的方式解釋AI系統的邏輯及運作模式。人類參與者和使用者需要意識到他們正在與AI系統進行互動,並且必須了解AI系統的功能和限制。 保持多樣性、不歧視和公平(Diversity, non-discrimination and fairness):AI不公平的偏見可能會加劇對弱勢群體的偏見和歧視,導致邊緣化現象更為嚴重。為避免此種情況,AI系統應該設計為所有人皆可以近用,達成使用者多樣性的目標。 社會和環境福祉(Societal and environmental well-being):AI應該使包含我們的後代在內的所有人類受益。因此AI必須兼顧永續發展、環境友善,並能提供正向的社會影響。  問責制(Accountability):應建立機制以妥當處理AI所導致的結果的責任歸屬,演算法的可審計性(Auditability)為關鍵。此外,應確保補救措施為無障礙設計。

因應FTC與NLRB對競業禁止的態度轉變,提供企業機密管理建議

本文整理截至2025年3月底,美國聯邦貿易委員會(Federal Trade Commission,下稱FTC)與全國勞工關係委員會(National Labor Relations Board,下稱NLRB)對於競業禁止的態度轉變,並整理因應政策趨勢之產業機密管理建議,提供企業參考。 一、FTC與NLRB對競業禁止的態度 1. FTC對競業禁止的態度:由「訂定規定以統一禁止競業禁止」轉為「針對不合理的競業禁止進行個案調查」 (1)由Lina Khan(前FTC主席)主導的FTC,於2024年4月通過「禁止企業簽訂競業禁止契約」最終版本的規定(以下稱「最終規定」)。最終規定要求大部分情況下,禁止企業與員工簽訂競業禁止契約。 其後,美國有3案挑戰FTC最終規定: 在ATS Tree Services, LLC v. FTC案,賓州法院於2024年7月同意FTC有權禁止其認為屬於不公平競爭的行為(競業禁止);而在另外兩案結果則相反,在Properties of the Villages, Inc. v. FTC案,佛州法院於2024年8月認定訴訟原告(房地產開發商)不受FTC最終規定的影響;而Ryan LLC v. FTC案,2024年7月德州法院更以FTC之立法範圍逾越其職權為由,於全國範圍認定撤銷最終規定。FTC不服兩案最終規定的結果並上訴。 關於最終規定的最新進展為,由Andrew Ferguson(現任FTC主席)主導的FTC,於2025年3月6日分別向第5、第11巡迴上訴法院提出動議,主張「擱置上訴審理120天(appeal in abeyance for 120 days)」。動議均已獲法院批准。 (2)此外,FTC現任主席於2025年2月26日宣布成立「聯合勞動力工作小組(Joint Labor Task Force)」,並發布備忘錄說明FTC將繼續關注反競爭行為,例如:公司與員工間的競業禁止契約、公司間互不招攬(人才)契約等。 即,可見FTC態度由「原則上禁止簽訂競業禁止契約」,轉為「依個案起訴其認為不合理的競業禁止契約」。 2. NLRB對競業禁止的態度:由「針對要求員工簽訂競業禁止的個案進行調查」轉為「將競業禁止行為排除調查範圍」 (1)NLRB為獨立的聯邦政府機構,由主任檢查官負責調查、起訴勞資案件。NLRB前主任檢查官Jennifer Abruzzo於2024年10月7日發布不具拘束力的GC 25-01備忘錄,其依循自己在2023年5月所發布的GC 23–08備忘錄中強調「過於寬泛的競業禁止契約,限制員工流動性,違反《國家勞工關係法》」,本次備忘錄進一步指出某些類型的『留任或付款(stay-or-pay)條款』侵害員工依NLRA所享有的權利」。並說明Jennifer Abruzzo欲自2024年12月6日起,調查該些「要求員工簽訂競業禁止、『留任或付款』條款的雇主」。 (2)現任的NLRB代理主任檢察官William B. Cowen於2025年2月14日發布GC 25-05備忘錄,該備忘錄以「NLRB積壓的案件量過多、需要全面審查過往備忘錄以符合當前需求」為由,針對過往NLRB發布的備忘錄,採取撤銷、撤銷後有待進一步提供指導等作法,其中包含「撤銷前述的GC 23–08、GC 25-01備忘錄」。 二、因應政策趨勢之產業機密管理建議 綜上,可得出競業禁止契約仍為FTC納管的範圍,本文彙整產業的建議,提供企業應及早採取的機密管理作法: 1. 針對政策面 應制定政策定義營業秘密,以鑑別營業秘密的範圍。 2. 針對人員面 (1)盤點企業內部既有的競業禁止契約,以確保契約條款中競業禁止的期限、地理範圍及業務範圍的限制不會過於廣泛,以致於無法執行;與員工簽訂其他類型契約,例如:保密契約、花園假條款、禁止僱傭關係終止後招攬(員工/客戶)的契約等。 (2)宣導企業的機密管理政策。 (3)提醒離職員工對企業的保密義務。 資策會科法所創意智財中心於2023年發布之「營業秘密保護管理規範」已涵蓋前述管理作法,我國企業如欲落實系統化的營業秘密管理作法,可以參考此規範。 本文為資策會科法所創智中心完成之著作,非經同意或授權,不得為轉載、公開播送、公開傳輸、改作或重製等利用行為。 本文同步刊登於TIPS網站(https://www.tips.org.tw)

初探與省思我國法制下之侵權行為適用於非依軌道行駛之自動駕駛車輛之過失內涵

初探與省思我國法制下之侵權行為適用於非依軌道行駛之自動駕駛車輛之過失內涵 資訊工業策進會科技法律研究所 2019年03月15日 壹、事件摘要   於2018年03月18日晚間10時許,美國亞利桑那州(Arizona,下稱Arizona)一名49歲的婦人,遭到配備Uber自動駕駛系統之車輛[1],在運行自動領航模式(Autopilot)下撞擊,雖然該婦人立即送往醫院,但仍回天乏術而在醫院中去世。就在前開事故發生後,Arizona州長Doug Ducey因此下令其暫停測試。[2]   此外,同年12月11日晚間10時許,在我國有一輛配備自動輔助駕駛功能的Tesla,疑似駕駛人精神不濟因而未能及時注意車前狀況,導致車禍發生,雖然肇責是否牽涉Tesla之自動輔助駕駛功能或駕駛人本身有無疲勞駕駛等情事,有待進一步釐清。[3]   綜上,不論測試或道路駕駛,現今社會已不乏具有一定自動駕駛等級之車輛於路上行駛,然而在推廣、研發或應用自動駕駛車輛(下稱自駕車)的同時,若不幸發生類似前開新聞之(車禍)事故時,相關肇事責任究應如何釐清,隨著我國已於2018年12月19日公布無人載具科技創新實驗條例以積極推動自駕車相關應用,更愈顯重要,為解決前開肇事相關疑慮,本文擬針對民事上之「過失」本質,反思自駕車相關應用可能延伸的事故責任,是否因應科技發展而有不同的過失內涵。 貳、重點說明   承上,面對自駕車相關科技與應用的世界洪流,若發生車禍等交通事故時,當事人相關之損害賠償請求,仍大多以民法上之侵權行為作為基礎,雖事故肇因種類眾多,亦常見各類的肇因共同造成事故發生,但本文考量相關議題繁複,以下僅就非依軌道行駛之自駕車、駕駛人過失內涵等框架下依序進行初探與反思: 一、我國侵權行為損害賠償係以行為人有無具抽象輕過失為斷   車禍之發生,若涉及駕駛人之行為者,受有不論財產或人身損害之人而欲請求賠償者,無論係依據民法第184條以下何條侵權行為之規定(即民法第184條第1項前段、同條項後段或第191條之2等規定),請求駕駛自駕車之人賠償,前提均為駕駛人具有過失,差別僅在舉證責任是否由請求權人(受有損害之人)負擔。   承上,既然前開侵權行為之重要成立要件為過失,其具體內容為則為駕駛人之注意義務應至何種程度,然在我國民事過失責任之架構上,有不同程度上之區分,即分別為抽象輕過失、具體輕過失及重大過失三種。申言之,抽象輕過失為欠缺應盡善良管理人之注意者義務;具體輕過失者為欠缺應與處理自己事務為同一注意者;重大過失者為顯然欠缺普通人之注意者[4]。   對此,實務見解[5]以及學者[6]歷來均認侵權行為之過失標準,應以行為人是否克盡客觀化之過失標準─抽象輕過失,倘否,則應負擔過失之賠償責任,是以,就此脈絡推論,自駕車之駕駛人若有違善良管理人注意義務致車禍發生且使他人受損害,即應負損害賠償責任。 二、駕駛人注意義務與自駕車自動駕駛程度間之互動   根據引領世界自駕車標準的領銜者─國際汽車工程師學會(Society of Automotive Engineers International,下稱SAE)所分類之自動化駕駛等級,區分為等級0至等級5(共6個等級),而等級3後之自駕車即開始逐漸將環境監控的任務從駕駛人移轉至車輛本身,而駕駛人僅在特殊條件下,方須接管駕駛車輛,更甚在等級5時是由自駕車在任何狀況下均可自行駕駛,不過在等級2前之等級,環境監控之任務大多在駕駛人身上,自駕車至多僅係協助運行駕駛人之指令[7]。   然而,自駕車駕駛人因車禍所生之侵權行為責任,誠如前述,係以駕駛人存有抽象輕過失作為前提,而過失之本質,則係雖非故意,但按其情節,(1)行為人(駕駛自駕車之人)應或能注意,卻不注意,或(2)雖可預見侵權行為(車禍肇事)之事實發生,但確信不發生[8],就此,在SAE分類等級2以前之自駕車,因監控環境之任務仍由駕駛人負擔,則該類等級自駕車之駕駛人應與一般車輛之駕駛人,負擔相同侵權行為之注意義務內容(或程度),但等級3至等級5自駕車之各式應用情境,車輛行駛環境之相關監控資訊已轉由車輛本身處理、控管,則駕駛人是否對於自駕車之車禍發生,仍具有可預見性,或得注意並防免之,則不無疑慮。 參、事件評析   綜上,本文所提不同等級自駕車,是否當然得以繼續適用傳統民事侵權行為之過失標準判斷駕駛人有無過失,實有相當程度上之衝突,蓋若自駕車之駕駛人對於行車環境資訊已不如駕駛一般車輛時,實難期待駕駛人對於車禍之發生有何預見可能,或在遇見後積極防免結果發生,倘若一概遵循傳統對車禍侵權行為之高注意義務要求─抽象輕過失責任,或將產生使不明瞭或難以預見該事故原因發生之人,卻必須就非因己誤之結果負責,某程度上似有違過失責任之本質,而質變成為無過失之擔保責任。   據此,本文認為,若要解決前開損害發生須有補償或賠償之問題,或可(1)透過保險、基金等方式填補損害,或(2)具體化等級3至等級5自駕車之駕駛人應負何等注意義務,如駕駛人須隨時處於得以接管車輛操作之狀態,使等級3以上之自駕車所應盡之注意義務與傳統侵權行為之注意義務脫鉤處理(3)與商品責任間進行相關的調和等,然而無論如何,對於此等問題或疑慮,究竟應採何方向或多方進行,甚或以其他方式解決,則有待後續更進一步的討論與分析。 [1] Uber於該州進行自動駕駛車輛之測試。 [2] ADOT director's letter to Uber halting autonomous vehicle tests, ADOT, https://www.azdot.gov/media/News/news-release/2018/03/27/adot-director's-letter-to-uber-halting-autonomous-vehicle-tests (last visited Mar. 21, 2019); Ryan Randazzo, Arizona Gov. Doug Ducey suspends testing of Uber selfdriving cars, azcentral, Mar. 26, 2018, https://www.azcentral.com/story/news/local/tempe-breaking/2018/03/26/doug-ducey-uber-self-driving-cars-program-suspended-arizona/460915002/ (last visited Mar. 21, 2019); Ryan Randazzo, Bree Burkitt & Uriel J. Garcia, Self-driving Uber vehicle strikes, kills 49-year-old woman in Tempe, azcentral, Mar. 19, 2018, https://www.azcentral.com/story/news/local/tempe-breaking/2018/03/19/woman-dies-fatal-hit-strikes-self-driving-uber-crossing-road-tempe/438256002/ (last visited Mar. 21, 2019). [3] 蘋果日報,〈台灣首例!特斯拉自動駕駛闖禍 國道上撞毀警車〉,2018/12/12,https://tw.appledaily.com/new/realtime/20181212/1482416/ (最後瀏覽日:2019/03/21)。 [4] 96年台上字第1649號判決。 [5] 19年上字第2476號判例。 [6] 王澤鑑,《侵權行為法》,自版,頁308-309(2011)。 [7] SAE International Releases Updated Visual Chart for Its “Levels of Driving Automation” Standard for Self-Driving Vehicles, SAE International, https://www.sae.org/news/press-room/2018/12/sae-international-releases-updated-visual-chart-for-its-%E2%80%9Clevels-of-driving-automation%E2%80%9D-standard-for-self-driving-vehicles (last visited Mar. 22, 2019). [8] 97年度台上字第864號判決。

CODEX增訂低量摻雜重組DNA植物成分之食品安全評估準則

  經過兩年的研議溝通,由國際食品標準委員會(Codex Alimentarius Commission,CODEX)生技衍生食品小組(Task Force on Foods Derived from Biotechnology,TFFBT)所研擬的「重組DNA植物成分低量摻雜之重組DNA植物來源食品安全評估準則之附件草案」(Draft Annex to the Guideline for the Conduct of Food Safety Assessment of Foods Derived from Recombinant-DNA Plants on Low-Level Presence of Recombinant-DNA Plant Material,LLP草案),終於日前送交CODEX大會決議通過。   關於植物來源食品內基改物質低量呈現(Low-Level Presence)的問題之所以受到國際間高度關切,其背景因素,其實是來自於全球各地域對於基因改造食品之食品安全審查進度狀態不一之情況使然。以最明顯的美國和歐盟為例,因為,對於植物來源食品而言,其所使用的植物原料,例如穀物、豆類、油菜種子等,在種植、運送至成品途中,尤其是在採收過程中,無可避免地均有可能會混雜到某些鄰近的合法基改植物原料;而目前國際現況是,許多在美國已通過食品安全評估之基改食品植物原料,在歐盟卻遲未獲得許可,而那些意外混雜了在美國為合法基改植物原料的食品,出口至尚未核准那些經混雜基改原料食品之國家時,則會因此被拒絕進口,而形成貿易上阻礙。   針對此問題,自2006年起,TFFBT特別召集成立一個工作小組,由美國出任小組主席,並與德國及泰國擔任共同主席,負責研擬LLP草案,以提供一套較簡易評估程序,專門針對這些混雜了低量的在出口國家已經合法、但在進口國家尚未通過食品安全檢驗之重組DNA植物成分食品之情形,提俱一套安全評估方法供進口國家政府參考,藉此,一方面確保這些摻雜低量重組DNA食品之安全性,另方面也不致令進口者因其產品含有低度摻雜而銷耗掉太過的貿易利益。   LLP草案對於摻雜低量重組DNA成份之進口國家而言,其較重要具實質意義的部份,係在於資料庫之建立、共享資訊之快速使用(rapid access)等機制的導入。研議期間,工作小組即表示會與相關國際組織聯繫,搭配建立適當之資訊資料庫。而負責籌設該資料庫的國際糧農組織(FAO)則表示,其除將運用其已建立的「國際食品安全及動植物健康入口網」(International Portal on Food Safety, Animal and Plant Health,IPFSAPH)外,並計劃與經濟合作發展組織(OECD)進行合作,引用「OECD生物追蹤產品資料庫」(OECD BioTrack Database)內依CODEX「重組DNA植物來源食品安全評估準則」(Guideline for the Conduct of Foods Safety Assessment of Foods Derived from Recombinant-DNA Plants (CODEX Plant Guideline),CODEX植物準則)所蒐羅之資訊,彙集各類相關資訊為一整合網站,並開放給公眾使用。

TOP