FinCEN發布「防制洗錢與打擊資助恐怖主義優先事項」,以因應各種新興威脅

  隨著犯罪集團洗錢管道與手法日新月異,嚴重威脅金融秩序與經濟發展,美國財政部金融犯罪執法網(Financial Crimes Enforcement Network, FinCEN)於2021年6月30日發布防制洗錢與打擊資助恐怖主義(anti-money laundering and countering the financing of terrorism, AML/CFT)政策的優先事項(Priorities),目的係為了應對日益猖獗之洗錢犯罪行為,幫助金融機構評估其風險,並調整其防制洗錢計畫和資源運用優先順序,以提升國家AML/CFT政策效率與有效性。

  依據發布內容,優先事項包括:(1)貪汙;(2)網路安全與虛擬貨幣相關之網路犯罪;(3)國內外資助恐怖分子;(4)詐欺;(5)跨國犯罪組織活動;(6)毒品販運組織活動;(7)人口販運與人口走私(human trafficking and human smuggling);(8)資助大規模毀滅性武器擴散(proliferation financing),反映了美國國家安全與全球金融體系長期以來存在之威脅,並將虛擬貨幣用於洗錢、資助恐怖主義,及支付勒索軟體攻擊贖金等納入防制洗錢範疇,防止虛擬貨幣成為洗錢管道。

  FinCEN預計於2021年底前提出實施辦法,並根據美國防制洗錢法(Anti-Money Laundering Act)之要求,至少每4年更新一次優先事項,以因應美國金融體系與國家安全面臨的各種新興威脅。

相關連結
※ FinCEN發布「防制洗錢與打擊資助恐怖主義優先事項」,以因應各種新興威脅, 資訊工業策進會科技法律研究所, https://stli.iii.org.tw/article-detail.aspx?d=8710&no=0&tp=1 (最後瀏覽日:2026/02/13)
引註此篇文章
你可能還會想看
韓國2012年度國家智財施行計畫檢討評估結果出爐

韓國2012年度國家智財施行計畫檢討評估結果出爐 科技法律研究所 2014年03月26日 壹、事件背景   韓國國家智慧財產委員會(以下簡稱智財委員會)於2013年11月13日公布「2012年度國家智財施行計畫之檢討評估結果」。韓國智財委員會係依智慧財產基本法第10條,檢討、評估施行計畫之推動情形。檢討評估對象係針對2012年度國家智財施行計畫(以下簡稱施行計畫)之5大政策面向:創造、保護、運用、基礎環境、新智慧財產,挑選出重點推動共21個課題。另為確保評估之專業性及客觀性,由民間專家組成「政策評估團」,並召開會議就不同的推動課題討論,然後以等級決定優劣。   針對21個課題進行檢討評估之結果顯示,被評為優秀等級之課題有4個,分別為「透過改善研究發展體系,創造高品質智慧財產」、「加強智慧財產侵權物品國境管制措施」、「塑造尊重智慧財產文化」、「建構、運用新植物品種育種之基礎環境」;而需要改善之課題則有3個,即「支援海外當地侵權之因應」、「強化地方中小企業之智財能力」、「發掘及確保海洋生物資源與智財創造之支援」。以下就評估方法及結果扼要說明之。 貳、評估方法及結果概述   韓國考量到智財施行計畫之特殊性,且加上是首次推動、評估國家層級智財政策之成效,所以不僅是評估政策成果,同時也要對政策形成、執行等政策基礎環境之確保等相關要素進行評估,對此,韓國設定3項評估指標:「政策形成」、「政策執行」、「政策成果」,詳細指標內容如下表所示: 區分 評估項目 評估基準 政策形成(30%) 1.計畫確立之適切性(15%) 1-1.事前分析、意見蒐集之充實性(5%) 1-2.成果指標及目標值之適當性(10%) 2.政策基礎環境之確保水準(15%) 2-1.推動體系之充實性(5%) 2-2.資源分配之適當性(10%) 政策執行(35%) 3.推動過程之效率性(25%) 3-1.推動日程之充實性(10%) 3-2.相關機關與政策連結性(10%) 3-3.監督及情況變化之對應性(5%) 4.政策擴散之努力水準(10%) 4-1.政策溝通、宣傳、教育之充實性(10%) 政策成果(35%) 5.政策成果及效果(35%) 5-1.成果目標達成度(20%) 5-2.政策效果(15%) 資料來源:韓國國家智財委員會 表1智財施行計畫之政策評估指標   為確保評估之專業性及客觀性,由韓國智財委員會之民間委員、及下設之創造、保護、運用、基礎環境、新智慧財產等專門委員會之專門委員,以及地方自治團體代表等30位成員組成政策評估團。每位評估委員就各機關提出之實績報告書內容為判斷依據,再依照不同指標之特性,進行定量和定性評估。政策評估團第1次評估完畢後,就會召開調整會議,決定各推動課題之評估等級(分成優秀、普通、需要改善3個等級)為何。   整體而言,韓國的智慧財產創造能力已提高不少,且韓國國內對智財保護水準亦逐漸提升,另外,對於智慧財產創造、保護、運用之正向循環體系所需之配套措施如新智慧財產相關法制,初步已整備完成。韓國之後擬要持續提高智財成果之品質,加強韓國在海外的智財保護,並且增進民間對智財運用政策之有感度,以及推動與新智財相關之各部會間對智財業務範圍調整與政策方面之合作推動。

英HFEA同意該國婦女利用PGD技術「訂製嬰兒」

  現今生殖醫學進步相當快速,透過諸如胚胎殖入前之基因診斷( PGD )、組織配對( tissue match )等新興生物技術,人們將有能力選擇未來孩子的外表、智力、健康甚至性別等,故就現今的科技發展而言,篩選具有某種特徵之嬰兒的技術能力早已具備,反而是相關的倫理、道德及社會共識等等卻是最難的部分,這也是有關「訂製嬰兒」( design babies )之爭議焦點。   近幾年,訂製嬰兒的討論在英國非常熱烈,在英國,人工生殖之進行應依人工生殖與胚胎學法規定,獲得 「人類生殖與胚胎管理局」 ( Human Fertilization and Embryology Authority, HFEA )之許可,至於進行人工生殖之同時,父母親是否得附加進一步的條件以「訂製嬰兒」,則一直有爭議。英國高等法院在 2002 年 12 月 20 日的一項判決中曾認為,國會制訂人工生殖與胚胎學法之目的,乃是在協助不孕婦女能夠生兒育女,至於組織配對的行為,則不在該法授權目的之內,因此 HFEA 無權就此等行為給予准駁。惟 2003 年 4 月 8 日 ,上訴法院推翻了高等法院的判決結果,但也進一步指出,這並不代表未來所有在進行 PGD 的同時加做組織配對之行為都是被允許的,想要施行這項技術之任何人,仍然需於事前取得 HFEA 的許可,新近 HFEA 已放寬管制規範,准許對更多種遺傳性疾病進行篩檢。   英國泰晤士報最近報導,一名英國女子已獲得英國 HFEA 同意 ,讓醫師將其透過體外受精方式培養出來的胚胎,利用基因篩檢技術,選擇出健康之胚胎植入其子宮內,以避免將她所罹患的遺傳性眼癌「視網膜母細胞瘤」基因傳給下一代。   本案婦女雖經 HFEA 同意「訂製嬰兒」,但仍會使「胚胎殖入前之基因診斷」( PGD )程序的爭議加劇,反對人士堅稱,基因篩檢的過程中勢必摧毀部分胚胎,且 為了某些目的而製造胚胎,將使人類被商品化,被訂製之嬰兒在長大成人後,若得知其出生之目的乃是在於治療其它親人,其心裡會對自己產生懷疑,並影響對自己人格的認同與其心理狀態。隨著生物技術發展飛快,許多可能背離社會良俗的行為恐將不斷出現,而法規能否隨之跟上則是生技產業能否興盛與倫理道德可否兼顧之重要關鍵。

德國聯邦資訊技術,電信和新媒體協會針對AI及自動決策技術利用提出建議指南

  德國聯邦資訊技術,電信和新媒體協會於2018年2月6日在更安全的網路研討會中針對利用人工智慧及自動決策技術利用提出建議指南(Empfehlungen für den verantwortlichen Einsatz von KI und automatisierten Entscheidungen),旨在提升企業數位化與社會責任,並提升消費者權益保護。 本份指南提出六項建議: 促進企業內部及外部訂定相關準則 例如規定公司在利用演算法和AI時,必須將影響評估列入開發流程,並列為公司應遵守的道德倫理守則,以確保開發的產品或服務符合公平及道德。 提升透明度 使用者如有興趣了解演算法及其含義,企業應協助調查並了解使用者想獲知的訊息,並透過相關訊息管道提升產品及服務透明度。因此,企業應努力使演算法及其操作和含義能夠被使用者理解。此亦涉及即將實施的歐盟一般資料保護規則中的透明度義務。在機器學習或深度學習情況下,可能會增加理解性和可追溯性難度,但有助於分析流程並使其更接近人類理解的方法在科學和商業實踐中,應特別關注並進一步討論。另外,透過教育及使用說明協助及控制功能,教導消費者係建立雙方信任的重要手段。企業應在第一線中說明產品或服務中使用的手段(演算法,機器學習,AI)。除了解釋使用那些技術來改進產品和服務外,應一併解釋如何從技術控制過程中獲得相關知識以及提供那些後援支持。另外,例如透過幫助頁面,儀表板或部落格,解釋發生什麼以及如何做出某些影響深遠的自動化決策,使用戶更了解有關使用自動決策相關訊息。因此建議企業採取強制有效以建立信任的措施,使用戶理解是否及如何使用相關演算法,此可能包括使用自動化決策,使用特定資料組和使用技術的目的,亦即使用戶對演算法,機器學習或AI支持的決策有基本的了解。 為全體利益使用相關技術 人工智慧等新技術之重要性不應被低估,目前在生活和工業等眾多領域皆有廣泛應用。對於個人和集體而言,將可帶來巨大的利益,因此應該充分利用。例如,人工智慧可降低語言障礙,幫助行動不便的人可更加獨立自主生活,改善醫療診斷,提升能源供應效率,甚至是交通規劃和搜索停車位,都只是人工智慧偉大且已被使用的案例。為促進技術發展,應公平地利用其優勢並預留商業應用模式的空間,同時充分解決涉及的具體風險。產業特定的解決方案十分重要,但應兼顧受影響者的利益,並與廣大公眾利益找出妥協平衡點,且應排除不適當的歧視。建議在使用決策支持技術時,應事先檢查相關後果並與其利益比較。例如,可以在資料保護影響評估的框架進行。作為道德準則的一部分,必須確保演算法盡可能量準確地預測結果。 開發安全的資料基礎 資料係人工智慧支援決策的基礎。與人為決策者相同,資料不完整或錯誤,將導致做出錯誤的決定。因此決策系統的可靠性仍取決資料的準確性。但資料質量和資料來源始終不能追溯到源頭,如果可能的話,只有匯總或非個人資料可用於分析或分類用戶群組。因此,確切細節不可被使用或揭露。因此建議企業應考慮要使用的資料、資料的類別和在使用AI系統前仔細檢查資料使用情況,特別是在自我學習系統中資料引入的標準,並根據錯誤來源進行檢查,且儘可能全面記錄,針對個人資料部分更應謹慎處理。 解決機器偏差問題 應重視並解決所謂機器偏差和演算法選擇和模型建立領域的相關問題。解釋演算法,機器學習或AI在基層資料選擇和資料庫時所產生決策偏見相當重要,在開發預期用途的演算法時必須納入考量,對員工應針對道德影響進行培訓,並使用代表性紀錄來創建可以識別和最小化偏差的方法。企業並應該提高員工的敏感度並培訓如何解決並減少機器偏見問題,並特別注意資料饋送,以及開發用於檢測模式的內、外部測試流程。 適合個別領域的具體措施和文件 在特別需要負責的決策過程,例如在車輛的自動控制或醫療診斷中,應設計成由責任主體保留最終的決策權力,直到AI的控制品質已達到或高於所有參與者水平。對類人工智慧的信任,並非透過對方法的無條件追踪來實現,而是經過仔細測試,學習和記錄來實現

FDA針對境內個人化診斷醫療器材管理發布指引文件草案

  為促進美國境內個人化診斷醫療器材發展並進一步實現個人化醫療之理想與目標,於今(2011)年7月14日時,FDA於各界期盼下,正式對外公布了一份「個人化診斷醫療器材管理指引文件草案」(Draft Guidance on In Vitro Companion Diagnostic Devices)。而於此份新指引文件草案內容中,FDA除將體外個人化診斷醫療器材定義為:「一種提供可使用相對應之安全且有效治療產品資訊之體外診斷儀器」外,亦明確指出,將視此類個人化檢測醫療器材產品為具第三風險等級之醫療器材,並採「以風險為基礎」(Risk-Based)之管理方式。   依據上述新指引文件草案內容,FDA對於此類產品之管理,除明訂其基本管理原則外,於其中,亦另列出兩項較具重要性之例外核准條件。第一項,是關於「新治療方法」(new therapeutics)部分,FDA認為,於後述情況下,例如:(1)該項新治療方法係針對「嚴重」或「威脅病患生命」、(2)「無其他可替代該新治療方法存在」、或(3)將某治療產品與未經核准(或未釐清)安全或功效之體外個人化診斷醫療器材並用時,其為病患所帶來之利益,明顯高於使用該項未經許可或未釐清之體外個人化診斷醫療器材所將產生之風險等前提下,FDA或將例外核准該項新治療方法。其二,是關於「已上市治療產品」部分,依據新指引文件草案,於下列各條件下,或將例外核准製造商以補充方式所提出之「新標示」產品之上市申請案,包括:(1)該新標示產品乃係一項已通過主管機關審查之醫療產品,且已修正並可滿足主管機關於安全方面之要求;(2)該產品所進行之改良須仰賴使用此類診斷試劑(尚未取得核准或未釐清安全功效);(3)將此項已上市治療產品與未經核准或未查驗釐清安全(或功效)之體外個人化診斷醫療器材並用時,其為病患所帶來之利益,明顯高於使用該項未經許可或查驗釐清之體外個人化診斷醫療器材所具之風險等。   此外,FDA方面還強調,若針對某項個人化診斷醫療器材之試驗結果顯示,其具較顯著之風險時,將進一步要求業者進行醫療器材臨床試驗(Investigational Device Exemption,簡稱IDE)。而截至目前為止,此項新指引文件草案自公布日起算,將開放60天供外界提供建議,其後FDA將參考各界回應,於修正後,再提出最終修正版本指引文件;然而,究竟FDA目前所擬採取之規範方式與態度,究否能符合境內業者及公眾之期待與需求?則有待後續之觀察,方得揭曉。

TOP