日本經產省發布《促進資料價值創造的新資料管理方法與框架(暫定)》之綱要草案徵求意見

  2021年7月中旬,日本經濟產業省(下稱經產省)發布《促進資料價值創造的新資料管理方法與框架(暫定)(データによる価値創造(Value Creation)を促進するための新たなデータマネジメントの在り方とそれを実現するためのフレームワーク(仮))》之綱要草案(下稱資料管理框架草案),並公開對外徵求意見。

  近年日本在「Society5.0」及「Connected Industries」未來願景下,人、機器與科技的跨界連接,將創造出全新附加價值的產業社會,然而達成此願景的前提在於資料本身須為正確,正確資料的自由交換,方能用於創造新資料以提供附加價值,因此正確的資料可說是確保網路空間連結具有可信性的錨點。為此,經產省提出資料管理框架草案,透過資料管理、識別資料在其生命週期中可能發生的風險,以確保資料在各實體間流動的安全性,從而確保其可信性。

  該框架將資料管理定義為「基於資料的生命週期,管理各場域中資料屬性因各種事件而變化的過程」,由「事件(資料的產生/取得、加工/利用、轉移/提供、儲存和處置)」、「場域(例如:各國家/地區法規、組織內規、組織間的契約)」和「屬性」(例如:類別、揭露範圍、使用目的、資料控制者和資料權利人)三要素組成的模組。經產省期望未來能透過三要素明確資料的實際情況,讓利害關係人全體在對實際情況有共同理解的基礎上,能個別確保適當的資料管理,達成確保資料正確之目的。

「本文同步刊登於TIPS網站(https://www.tips.org.tw )」

相關連結
你可能會想參加
※ 日本經產省發布《促進資料價值創造的新資料管理方法與框架(暫定)》之綱要草案徵求意見, 資訊工業策進會科技法律研究所, https://stli.iii.org.tw/article-detail.aspx?d=8719&no=67&tp=1 (最後瀏覽日:2026/01/12)
引註此篇文章
你可能還會想看
歐盟國會通過頗受爭議之「反仿冒貿易協定(ACTA)

  在歷經多次談判會議,由包括美國、歐盟、日本、韓國等11個國家共同參與的「反仿冒貿易協定(Anti-Counterfeiting Trade Agreement, 簡稱ACTA)」,終於在雪梨展開的最後談判回合(11月30日-12月4日)中獲得共識,並於日前正式對外發布ACTA協定文本內容。   該協定旨在透過跨國境的國際合作,有效打擊日益猖獗的盜版及仿冒問題,全文共計6章45條文,包括民、刑事執行、邊境措施等,且因應數位化時代對智慧財產權保護所帶來的衝擊,針對數位化環境智慧財產權的執行措施,也有相對應的規定(section 5: Enforcement of Intellectual Property Rights in the Digital Environment)。而ACTA協定文本尚須提交各簽約國政府或國會表決同意的程序,方能生效。   以歐盟為例,儘管遭受歐盟境內廣大的批評聲浪,歐盟國會於11月24日以驚險的半數通過爭議許久的「反仿冒貿易協定(Anti-Counterfeiting Trade Agreement, ACTA) 」。歐盟國會宣稱,透過ACTA協定的簽署,以國際合作的方式,將有助於解決現今猖獗的侵權問題,以落實智慧財產權的保障。尤其是針對歐盟境內的地理標誌(如Champagner、Spreewald-Gurken),未來將可透過跨國合作,提升對歐洲企業的保護。雖然現階段仍有許多問題未能達成共識,但至少ACTA協定啟動各國合作打擊仿冒的開端。   不過,雖然歐盟執委會一直以來對外“消毒“, ACTA協定的簽署前提是在符合歐盟現行法規的基礎上,並且不會對歐盟人民的基本權、個人隱私權保障造成威脅。但包括電子通 訊傳播業者(e-communications providers)、無疆界醫師組織等團體,都發表聲明,要求歐盟國會確保ACTA協定落實於各會員國內,不會影響改變歐盟既有的法制規範。包括是否引進三振條款,透過網路封鎖手段遏止侵權行為、是否以刑事手段制裁侵權人等爭議,勢必在各歐盟會員國提交其國會表決時,將引起極大的討論。

美國最高法院認定州政府得對電商業者課徵銷售稅

  美國最高法院在今(2018)年1月12日決定接受南達科塔州的上訴,就South Dakota v. Wayfair一案(下稱Wayfair案)進行審理,以決定州政府是否有權對網路零售業者課徵銷售稅。依據最高法院在1992年Quill v. North Dakota (下稱Quill案)所確立之原則,若網路零售商在該州無實體呈現 (physical presence),州政府即不得對該零售商向該州居民所銷售之貨物課徵銷售稅。   在1992年Quill案中,最高法院認為州政府對於遠距零售者(remote retailer)課稅,將違反潛在商務條款(dormant commerce clause),理由是對於無具體呈現的零售商課稅,將使其面對許多不同的課稅管轄權,造成零售商巨大的負擔,並增加州際商務的複雜性。南達科塔州認為科技的進步已使得零售商商所面臨課稅的複雜度降低,故在2016年通過法案對無實體呈現之電商業者課稅,因而引發相關爭訟。   本案在今年6月21日宣判由南達科塔州勝訴,判決指出隨著電子商務的成長及資訊科技的進步,課稅並不如過往會對業者造成具大的負擔,同時也可滿足正當程序與潛在商務條款的要求;此外,Quill案將會造成市場的扭曲,其所造成的稅捐保護傘將對具有實體呈現的業者造成不公平的競爭。因此認定Quill案已難以適用於現在的電子商務市場。   但本案仍有四位大法官反對,認為應由國會立法來糾正此一錯誤。因為國會並未明確授權州政府可對跨州零售交易課稅,因此才有潛在商務條款的適用,換言之,國會實際擁有立法授與各州徵收遠距交易之權力,在115期國會當中,也已經有相關的法案被提出,包括Remote Transaction Parity Act of 2017 (H.R. 2193)、Marketplace Fairness Act of 2017 (S.976)。在最高法院完成此一判決後,後續可繼續觀察美國國會是否會以立法的方式,授與州政府對跨州商業貿易課徵租稅。

美國公民權利辦公室就Sentara醫療機構違反個資外洩通知義務予以重罰

  美國衛生及公共服務部(Department of Health and Human Services, 下稱HHS)轄下的公民權利辦公室(Office for Civil Right, 下稱OCR)在2019年11月27日,正式對Sentara醫療機構處以217萬美元行政罰,主因該機構違反《健康保險可攜與責任法》(Health Insurance Portability and Accountability Act, 下稱HIPAA)的醫療個資外洩通知義務。   HIPAA是美國有關醫療個資管理的主要規範,依據HIPAA第164.400條以下「違反通知規則」(Breach Notification Rule)規定,當超過500位病患的「受保護健康資訊」(Protected Health Information, 下稱PHI)遭受不當使用或被外洩時,除應通知受害人外,還必須立即告知HHS以及在當地知名媒體發布新聞。而OCR主要負責檢查受規範機構,是否確實執行HIPAA隱私、安全和違反通知規則。   而在2017年4月,HHS收到指控Sentara將含有病患姓名、帳號、就診日期等涉及PHI的帳單發送到錯誤地址,造成557名病患個資外洩。Sentara卻認為該帳單內容未含有病患病歷、治療資訊或其他診斷紀錄,且僅有8人被影響,並非HIPAA應進行個資外洩通知義務之範疇,故不依規定程序通報HHS。不過OCR認為依HIPAA第160.103條規定,PHI包含病史、保險資訊、就醫紀錄(含日期)、身心健康狀態等可識別個人之健康資訊。因此認為Sentara確實違反個資外洩通知義務,予以罰款並命檢討改善。   Sentara醫療機構服務範圍橫跨美國維吉尼亞州(Virginia)和北卡羅來納州(North Carolina),共有12家急性照護醫院、10家護理中心和3家照護機構,為美國最具知名的大型非營利醫療機構之一。這次重罰也告誡國內醫療機構當發生敏感性醫療個資外洩時應從嚴判斷,以避免民眾對醫療照護單位失去信任,確保國內醫療機構體系應恪遵HIPAA規範。

IBM提出「人工智慧日常倫理」手冊作為研發人員指引

  隨著人工智慧快速發,各界開始意識到人工智慧系統應用、發展過程所涉及的倫理議題,應該建構出相應的規範。IBM於2018年9月02日提出了「人工智慧日常倫理」(Everyday Ethics for Artificial Intelligence)手冊,其以明確、具體的指引做為系統設計師以及開發人員間之共同範本。作為可明確操作的規範,該手冊提供了問責制度、價值協同、可理解性等關注點,以促進社會對人工智慧的信任。 一、問責制度(Accountability)   由於人工智慧的決策將作為人們判斷的重要依據,在看似客觀的演算系統中,編寫演算法、定義失敗或成功的程式設計人員,將影響到人工智慧的演算結果。因此,系統的設計和開發團隊,應詳細記錄系統之設計與決策流程,確保設計、開發階段的責任歸屬,以及程序的可檢驗性。 二、價值協同(Value Alignment)   人工智慧在協助人們做出判斷時,應充分考量到事件的背景因素,其中包括經驗、記憶、文化規範等廣泛知識的借鑑。因此系統設計和開發人員,應協同應用領域之價值體系與經驗,並確保演算時對於跨領域的文化規範與價值觀之敏感性。同時,設計師和開發人員應使人工智慧系統得以「了解並認知」用戶的價值觀,使演算系統與使用者之行為準則相符。 三、可理解性(Explainability)   人工智慧系統的設計,應盡可能地讓人們理解,甚至檢測、審視它決策的過程。隨著人工智慧應用範圍的擴大,其演算決策的過程必須以人們得以理解的方式解釋。此係讓用戶與人工智慧系統交互了解,並針對人工智慧結論或建議,進而有所反饋的重要關鍵;並使用戶面對高度敏感決策時,得以據之檢視系統之背景數據、演算邏輯、推理及建議等。   該手冊提醒,倫理考量應在人工智慧設計之初嵌入,以最小化演算的歧視,並使決策過程透明,使用戶始終能意識到他們正在與人工智慧進行互動。而作為人工智慧系統設計人員和開發團隊,應視為影響數百萬人甚至社會生態的核心角色,應負有義務設計以人為本,並與社會價值觀和道德觀一致的智慧系統。

TOP