美國國家標準暨技術研究院(National Institute of Standards and Technology, NIST)為管理人工智慧對於個人、組織以及社會所帶來之風險,於2021年7月29日提出將建立「人工智慧風險管理框架」(Artificial Intelligence Risk Management Framework, AI RMF)之規畫並徵詢公眾意見,截止日為9月15日,並預計於10月發布正式報告。
依照NIST說明,公眾所建議之人工智慧風險管理框架,可促進人工智慧之可信賴性,其中包含如何應對並解決人工智慧於設計、發展及使用過程中所遭遇之「精確度」(accuracy)、「可解釋性」(explainability)、「偏見」(bias)等議題。此外,上開管理框架預計為非強制性、供企業自願性使用於人工智慧設計、發展、使用、衡量及評估之人工智慧標準。
依現有公眾意見徵詢結果,其中DeepMind公司建議於人工智慧設計初期,必須預先構思整體系統之假設是否符合真正社會因果關係。舉例言之,當設計一套可預測民眾健保需求程度之系統時,如輸入參數僅考量民眾於醫療上的花費,將使僅有可負擔較高醫療費用之民眾被歸類為健保需求程度較高者,從而導致健保制度排擠經濟負擔程度較差之公民,故在設計系統時,應從預先設定之假設事實反面(counter-factual)思考並驗證是否會產生誤差或公平性之問題(例如預先思考並驗證「醫療費用支出較低之民眾是否即可被正確歸類為健保需求度低之民眾」)。惟進行上述驗證需要大量社會資料,因此DeepMind也建議NIST應建立相關機制,使這些社會資料可以被蒐集、使用。
此外,亦有民眾建議管理框架應有明確之衡量方法以及數值指標,以供工程界遵循。同時鑒於人工智慧發展極為快速,未來可能有不同於以往之人工智慧類型出現,故亦建議NIST應思考如何在「建構一套完整且詳細之人工智慧治理框架」與「保持人工智慧治理框架之彈性與靈活性」之間取得平衡。
最後,目前也有許多徵詢意見指出,許多人工智慧治理之目標會相互衝突。舉例言之,當NIST要求人工智慧系統應符合可解釋性,則人工智慧公司勢必需要經常抽取人工智慧系統中之「數據軌跡」(audit logs),惟數據軌跡可能被認為是使用者之個人資料,因此如何平衡或完善不同治理框架下之目標,為未來應持續關注之議題。
本文為「經濟部產業技術司科技專案成果」
美國衛生及公共服務部(U.S. Department of Health and Human Services, HHS)依21世紀醫療法(21st Century Cures Act)於2018年11月28日公布由國家健康資訊技術協調辦公室(Office of the National Coordinator for Health Information Technology, ONC)與美國聯邦醫療保險和補助服務中心(Centers for Medicare & Medicaid Services, CMS)共同起草的「減輕使用健康資訊科技及電子健康紀錄所造成的管制與行政負擔之策略(Strategy on Reducing Regulatory and Administrative Burden Relating to the Use of Health IT and EHRs)」草案,以緩解健康資訊科技(Health Information Technology)於臨床使用的負擔。 雖然資通訊科技的進步促進許多產業的發展,卻在醫療產業造成應用上的問題,如臨床醫師會花費更多的時間、人力成本於登載電子健康紀錄,而壓縮與患者溝通的時間。為改善這些問題,此草案針對臨床紀錄建檔(Clinical Documentation)、健康資訊科技的可用性與使用者經驗(Health IT Usability and the User Experience)、電子健康紀錄報告(EHR Reporting)、及公共衛生報告(Public Health Reporting)四大議題提出相對應的策略及建議採用的措施。並以三個主要方向為討論主軸:降低臨床醫師紀錄患者健康資訊所耗費的人力時間成本、降低臨床醫師、醫院與健康照護機構(health care organizations)為達到報告規範標準而耗費的人力時間成本、及促進電子健康紀錄在使用上的功能性與直覺性(functionality and intuitiveness),以期能促進醫病溝通,並進一步完善健康照護環境。此草案在2019年1月28日前開放公眾提出建議,並預計於2019年年底公布最終版本。
台灣智慧財產管理規範(TIPS)之發展與現況 何謂「循環經濟」?循環經濟(Circular Economy)不僅是資源回收或廢棄物利用,循環經濟強調的核心概念是創造資源利用的最大效益,有別於傳統經濟模式在資源利用上「開採、製造、使用、丟棄」的線性歷程,循環經濟加入了減少廢棄物產生、資源重覆與有效利用的概念,讓資源利用與產品的生成不再是有去無回的單向線性歷程。 循環經濟的概念能夠套用到所有產品的生命歷程當中,自產品設計、生產、物流、銷售、使用、回收,到投入新的產品生命歷程,以環型的資源利用歷程,加入各種資源再利用的方式,並盡可能減少真正廢棄物的生成。與此相關聯的包含新興科技如大數據、物聯網之應用,到創新商業模式的生成,都可以是循環經濟的一部分。 循環經濟所揭示的概念,是讓產業發展與環境保護能攜手同行,創造資源利用的最大效益。在歐盟「展望2020計畫」(Horizon 2020)當中,也同樣把循環經濟列為計畫的重要領域之一,循環經濟時代來臨所揭櫫的不僅僅是在資源回收、或是幾種廢棄物再利用的技術,而是對經濟體系當中資源運用歷程的重新形塑,與新興科技及商業模式創新均密不可分。
因應巨量資料(Big Data)與開放資料(Open Data)的發展與科技應用,美國國會提出「資料仲介商有責與透明法草案」(Data Broker Accountability and Transparency Act)美國國會議員Markey與Rockefeller於2014年2月提出S. 2025:「資料仲介商有責與透明法草案」(Data Broker Accountability and Transparency Act),以促進對於消費者保護,與資料仲介產業發展間的平衡。該草案預將授權「美國聯邦貿易委員會」與各州據以監督與執行。 該草案對「資料仲介商」(以下簡稱Data Broker)加以定義為係以銷售、提供第三方近用為目的,而蒐集、組合或維護非其客戶或員工之個人相關資料的商業實體;更進一步的禁止Data Broker以假造、虛構、詐欺性的陳述或聲明的方式(包括提供明知或應知悉為偽造、假造、虛構、或詐欺性陳述或聲明的文件予以他人),自資料當事人取得或使其揭露個人相關資料。 該草案亦要求Data Broker建置及提供相關程序、方式與管道,以供資料當事人進行下列事項: 1.檢視與確認其個人相關資料(除非為辨識個人為目的的姓名或住址)正確性(但有其他排除規定)。 2.更正「公共紀錄資訊」(Public Record Information)與「非公共資訊」(Non-public Information) 3.表達其個人相關資料被使用的時機與偏好。例如在符合一定條件下,資料當事人得以「選擇退出」(Opt Out)其資料被Data Broker蒐集或以行銷為目的而販售。 於此同時,加州參議院亦已於2014年5月通過S.B. 1348:Data Brokers的草案,該草案要求資料當事人擁有檢視Data Broker所持有的資料,並得要求其於刪除提出後10天內永久刪除;當資料一經刪除,該Data Broker不得再行轉發或是將其資料販售給第三人。加州參議院並提案,該法案通過後將涵蓋適用至2015年1月1日所蒐集的資料,且個人於Data Broker每次違反時得提出$1,000美元的損害賠償訴訟(律師費外加)。雖然該草案受到隱私權保護團體的支持,卻受到加州商會(California Chamber of Commerce)與直銷聯盟(Direct Marketing Association)的反對。加州在Data Broker的立法規範上是否能超前聯邦的進度,讓我們拭目以待吧。