美國國家標準暨技術研究院規劃建立「人工智慧風險管理框架」,並徵詢公眾對於該框架之意見

  美國國家標準暨技術研究院(National Institute of Standards and Technology, NIST)為管理人工智慧對於個人、組織以及社會所帶來之風險,於2021年7月29日提出將建立「人工智慧風險管理框架」(Artificial Intelligence Risk Management Framework, AI RMF)之規畫並徵詢公眾意見,截止日為9月15日,並預計於10月發布正式報告。

  依照NIST說明,公眾所建議之人工智慧風險管理框架,可促進人工智慧之可信賴性,其中包含如何應對並解決人工智慧於設計、發展及使用過程中所遭遇之「精確度」(accuracy)、「可解釋性」(explainability)、「偏見」(bias)等議題。此外,上開管理框架預計為非強制性、供企業自願性使用於人工智慧設計、發展、使用、衡量及評估之人工智慧標準。

  依現有公眾意見徵詢結果,其中DeepMind公司建議於人工智慧設計初期,必須預先構思整體系統之假設是否符合真正社會因果關係。舉例言之,當設計一套可預測民眾健保需求程度之系統時,如輸入參數僅考量民眾於醫療上的花費,將使僅有可負擔較高醫療費用之民眾被歸類為健保需求程度較高者,從而導致健保制度排擠經濟負擔程度較差之公民,故在設計系統時,應從預先設定之假設事實反面(counter-factual)思考並驗證是否會產生誤差或公平性之問題(例如預先思考並驗證「醫療費用支出較低之民眾是否即可被正確歸類為健保需求度低之民眾」)。惟進行上述驗證需要大量社會資料,因此DeepMind也建議NIST應建立相關機制,使這些社會資料可以被蒐集、使用。

  此外,亦有民眾建議管理框架應有明確之衡量方法以及數值指標,以供工程界遵循。同時鑒於人工智慧發展極為快速,未來可能有不同於以往之人工智慧類型出現,故亦建議NIST應思考如何在「建構一套完整且詳細之人工智慧治理框架」與「保持人工智慧治理框架之彈性與靈活性」之間取得平衡。

  最後,目前也有許多徵詢意見指出,許多人工智慧治理之目標會相互衝突。舉例言之,當NIST要求人工智慧系統應符合可解釋性,則人工智慧公司勢必需要經常抽取人工智慧系統中之「數據軌跡」(audit logs),惟數據軌跡可能被認為是使用者之個人資料,因此如何平衡或完善不同治理框架下之目標,為未來應持續關注之議題。

本文為「經濟部產業技術司科技專案成果」

相關連結
相關附件
※ 美國國家標準暨技術研究院規劃建立「人工智慧風險管理框架」,並徵詢公眾對於該框架之意見, 資訊工業策進會科技法律研究所, https://stli.iii.org.tw/article-detail.aspx?d=8727&no=67&tp=1 (最後瀏覽日:2026/01/29)
引註此篇文章
你可能還會想看
歐盟執委會發布「歐洲健康資料空間」規則提案,旨在克服健康資料利用之障礙

  歐盟執委會(European Commission)於2022年5月3日發布「歐洲健康資料空間」(European Health Data Space, EHDS)規則提案,其旨在克服健康資料利用之障礙,以充分發揮數位健康與健康資料之潛力。EHDS為一個專門用於健康之資料共享框架(health-specific data sharing framework),針對患者以及用於研究、創新、政策制定、患者安全、統計或監管目的等電子健康資料之運用,建立明確規則、通用標準與實務、基礎設施與治理框架,無論是個人、醫療人員、健康照護提供者、研究人員、監管人員、產業界皆可由此受益。   EHDS之具體內容主要包括九個章節: (1)第一章為一般條款(General provisions),內容包括本規則之主題與範圍,並闡明定義、以及與其他歐盟法規之關係; (2)第二章為電子健康資料之原始利用(Primary use of electronic health data),其針對歐盟一般資料保護規則(GDPR)所載權利,增訂補充性之配套保護機制,並設定醫事人員及其他健康從業人員針對EHD之義務; (3)第三章為EHR系統與福祉應用(EHR systems and wellness applications),其主要重點為EHR系統之強制性自我認證計畫(mandatory self-certification scheme),要求其需符合可互通性與安全性等基本要求,並界定EHR系統中各經濟營運商(economic operator)之義務、EHR系統合規(conformity)要求,並負責EHR系統市場監督機構之義務; (4)第四章為電子健康資料之二次利用(Secondary use of electronic health data),如將資料用於研究、創新、政策制定、患者安全或監管活動。本章定義一組資料類型,規範可利用之既定目的以及受禁止之目的(如商業廣告、增加保險、開發危險產品),並規定會員國必須建立健康資料近用機構(health data access body),以便電子健康資料的二次利用,並確保由資料持有者所產生之電子資料可提供給資料使用者; (5)第五章為其他行動(Additional actions),其旨在提出其他措施以促進會員國之能量建構(capacity building),以配合EHDS之發展,包括數位公共服務之資訊交換、資金,並規範於EHDS下非個人資料之國際近用規定; (6)第六章為歐洲治理與協調(European governance and coordination),其創建「歐洲健康資料空間委員會」(European Health Data Space Board, EHDS Board),促進數位健康當局及健康資料近用機構之間的合作,特別是電子健康資料之原始與二次利用間之關係,並包含歐盟基礎設施聯合管理小組(joint controllership groups for EU infrastructure)相關規定,其任務在於就電子健康資料之原始與二次利用所需之跨境數位基礎建設進行相關決策; (7)第七章為授權與委員會(Delegation and Committee),其允許歐盟執委會通過關於EHDS之授權法案(delegated acts),並希望根據C (2016) 3301號決定成立一個專家小組,以便於準備授權法案、實施本規則時提供建議與協助; (8)第八章為附則(Miscellaneous)規定,其中包含關於合作與處罰之規定,以及要求於本規則實施後進行評估與檢視之條款; (9)第九章為延遲適用與最終條款(Deferred application and final provisions),其規定本規則與個別條款之生效日。

日本ICT全球化戰略

  日本總務省為透過推動社會全體數位化,實現SDGs及Society 5.0目標,自2018年12月起召開「數位變革時代之ICT全球化戰略懇談會」(デジタル変革時代のICTグローバル戦略懇談会)檢討具體對策,並於2019年5月31日公布「ICT全球化戰略」(ICTグローバル戦略)。「ICT全球化戰略」基於社會全體數位化、推廣Society 5.0,以及透過提昇產業構造和勞動環境效率,創造具備豐富多彩價值之社會等理念,提出(1)透過數位化達成SDGs戰略︰公私部門合作推動社會全體之數位化,解決日本及世界社會問題;(2)資料流通戰略︰以確保個人資料之可控性為前提,推動制定國際規範及進行法制環境整備;(3)AI/IoT加值運用戰略︰提出以人類為中心之AI原則,檢討AI時代之資料重要性,推動AI人才培育;(4)網路安全戰略︰因應IoT機器和服務發展,確保網路安全性;(5)ICT海外展開戰略︰因應世界數位市場發展趨勢,檢討如何推動日本企業於海外發展;(6)開放創新戰略︰從利用次世代溝通技術提高生活品質、實現由資料所驅動之社會、建構支援未來之高度化網路等方向出發,推動相關研發計畫等6大戰略。

國際貨幣組織呼籲各國共同擬定監管加密貨幣之框架

  加密貨幣經濟襲捲全球,國際貨幣組織(IMF)總裁Christine Lagarde於官方網站發表對加密貨幣經濟可能涉及之風險及未來各界應如何共同應對之看法;認為加密貨幣有無限發展之潛力,其所應用之技術不僅提升金融產業發展,更為其他領域注入創新技術,惟發展之同時,潛在不法風險逐漸浮上檯面,加密貨幣不受中央銀行監管,並因其匿名性而容易成為洗錢、資恐的全新金融犯罪工具;另外,全球加密貨幣交易活動越發頻繁,交易價格的極端波動性,以及與傳統金融體系之間的關聯不明確,皆可能危害全球金融之穩定性。   Christine Lagarde認為加密貨幣交易之監管,與監管傳統金融所制定之政策並無二致,皆應以「確保金融穩定性和保護消費者」為首要政策,因此,提出幾個應對方向: 將加密貨幣創新技術用於監管行為技術中 (1)分散式帳本技術 (DLT)   為加快市場參與者與監管機構之間的訊息共享,確保用戶交易安全,可將此技術用來建立註冊標準,驗證客戶資訊及數位簽章;各政府機關亦可利用此技術所獲得之相關數據減少逃漏稅現象。 (2)生物辨識、人工智慧與加密技術   將生物辨識、人工智慧與加密等技術來強化數位安全,及時辨識可疑交易行為,有效抑止非法交易。 全球應共同發展出監管框架,跨國合作打擊不法   有鑑於加密貨幣的流通是全球性的,全球應共同發展出監管框架,2018年G20高峰會中加密貨幣也納入討論議題,藉由凝聚國際間共識,避免創新科技淪為犯罪工具。   面對加密貨幣價格的波動性,各界有不同解讀,有認為這只是一時狂熱所造成,終將泡沫化;亦有認為就如同物聯網發展初期革命一般,加密貨幣將破壞整個金融體系,取代現有的法定貨幣;惟Christine Lagarde表示事實應該是介於這兩個極端想法之間,各界不應片面否定加密貨幣,應採包容之看法迎接這項新科技,更應正視其潛在之危險。   國內現已有多家虛擬貨幣交易平台實際運營,為保護消費者權益,避免國內虛擬交易平台淪為洗錢、資恐行動之犯罪溫床,日前法務部已邀集金管會、內政部、央行、警政署、調查局等單位進行跨部會協商,擬於收集各界意見後,修訂相關規範,以利我國對於虛擬貨幣監管之政策方向與範圍能符合各方期待。

美國聯邦交易委員會提出巨量資料報告,關注商業應用之潛在歧視性效果

  美國聯邦交易委員會(Federal Trade Commission, FTC)於2016年1月6日公布「巨量資料之商業應用」報告(Big Data: A Tool for Inclusion or Exclusion? Understanding the Issues),報告中歸納提出可供企業進一步思考之數項議題,期能藉此有助於企業確保巨量資料分析應用之正當合法性,並避免產生排除性或歧視性之對待,但同時亦能透過巨量資料之分析應用為消費者帶來最大的利益。FTC主委Edith Ramirez表示,巨量資料之重要性於商業之各領域均愈發凸顯,其對於消費者之潛在利益自是不言可喻,然企業仍應確保巨量資料之利用不會產生傷害消費者之結果。   「巨量資料之商業應用」報告經徵集公共意見與彙整相關研究後,聚焦於巨量資料生命週期的後端,亦即巨量資料被蒐集與分析之後的利用。報告中強調數種能幫助弱勢群體的巨量資料創新利用方式,例如依病患之生理特性量身訂作並提供醫療照護,或是新的消費者信用評等方式。報告同時也指出可能因為偏見或資料錯誤帶來的風險,像是信用卡發卡銀行降低某人信用額度的原因並非基於該持卡人之消費與還款記錄,而是與該持卡人被歸為「同一類型」之消費者所共同擁有之記錄與特徵。其次,報告對巨量資料於商業領域之利用可能涉及之法規進行了初步盤點,包括公平信用報告法(Fair Credit Reporting Act, FCRA)、與機會平等相關之聯邦立法—像是基因資訊平等法(Genetic Information Nondiscrimination Act, GINA)、以及聯邦交易委員會法,報告也列出7項預擬提問,協助企業因應巨量資料商業利用之法令遵循問題。

TOP