美國國家標準暨技術研究院(National Institute of Standards and Technology, NIST)為管理人工智慧對於個人、組織以及社會所帶來之風險,於2021年7月29日提出將建立「人工智慧風險管理框架」(Artificial Intelligence Risk Management Framework, AI RMF)之規畫並徵詢公眾意見,截止日為9月15日,並預計於10月發布正式報告。
依照NIST說明,公眾所建議之人工智慧風險管理框架,可促進人工智慧之可信賴性,其中包含如何應對並解決人工智慧於設計、發展及使用過程中所遭遇之「精確度」(accuracy)、「可解釋性」(explainability)、「偏見」(bias)等議題。此外,上開管理框架預計為非強制性、供企業自願性使用於人工智慧設計、發展、使用、衡量及評估之人工智慧標準。
依現有公眾意見徵詢結果,其中DeepMind公司建議於人工智慧設計初期,必須預先構思整體系統之假設是否符合真正社會因果關係。舉例言之,當設計一套可預測民眾健保需求程度之系統時,如輸入參數僅考量民眾於醫療上的花費,將使僅有可負擔較高醫療費用之民眾被歸類為健保需求程度較高者,從而導致健保制度排擠經濟負擔程度較差之公民,故在設計系統時,應從預先設定之假設事實反面(counter-factual)思考並驗證是否會產生誤差或公平性之問題(例如預先思考並驗證「醫療費用支出較低之民眾是否即可被正確歸類為健保需求度低之民眾」)。惟進行上述驗證需要大量社會資料,因此DeepMind也建議NIST應建立相關機制,使這些社會資料可以被蒐集、使用。
此外,亦有民眾建議管理框架應有明確之衡量方法以及數值指標,以供工程界遵循。同時鑒於人工智慧發展極為快速,未來可能有不同於以往之人工智慧類型出現,故亦建議NIST應思考如何在「建構一套完整且詳細之人工智慧治理框架」與「保持人工智慧治理框架之彈性與靈活性」之間取得平衡。
最後,目前也有許多徵詢意見指出,許多人工智慧治理之目標會相互衝突。舉例言之,當NIST要求人工智慧系統應符合可解釋性,則人工智慧公司勢必需要經常抽取人工智慧系統中之「數據軌跡」(audit logs),惟數據軌跡可能被認為是使用者之個人資料,因此如何平衡或完善不同治理框架下之目標,為未來應持續關注之議題。
本文為「經濟部產業技術司科技專案成果」
大多數國家是認為動植物為法定不得授予專利之標的,歐盟以往因為歐洲專利公約實施細則(Implementing Regulations to the Convention on the Grant of European Patents,下簡稱實施細則)跟擴大上訴委員會(the Enlarged Board of Appeal,簡稱EBA)決定不一致而造成爭議,EBA於2020年5月做出的新決定,對於動植物是否為可授予專利之標的做出一致性解釋。 在歐洲專利公約(European Patent Convention,簡稱EPC)第53條第2款規定用以生產動植物的基本生物學方法不可授予專利,並於2017年生效的實施細則第28條第2項將其進一步擴張解釋成,僅運用基本生物學方法所產生的動植物不可授予專利,這與EBA在2015年所做出的決定(G 2/12、G 2/13)並不一致,在2015年的決定中提到,運用基本生物學方法來界定動植物的請求項仍可以被接受,因此實施細則第28條第2項與2015年的決定產生衝突。 於2019年,技術上訴委員會(Technical Board of Appeal)在案例T 1063/18中發現了這個問題,並提到EBA討論,EBA表示,考慮到法條涵義可能因時間產生變化,需要對EPC第53條第2款進行動態解釋(dynamic interpretation),實施細則第28條第2項與EPC第53條第2款並未矛盾,而是進一步擴展為,僅通過基本生物學過程,或是由基本生物學方法界定動植物之情況,皆屬於不可授予專利之情況,而推翻之前的決定。而為維持法律安定性,本決定(G 3/19)對於2017/07/01前生效或申請的案件並不具效力。 「本文同步刊登於TIPS網站(https://www.tips.org.tw )」
歐盟通過最新基因改造生物指令,並堅持產品標示歐洲議會於今(2015)年1月13日通過最新決議(10972/3/2014 – C8-0145/2014)「修正2001/18/EC歐洲議會與理事會指令,關於會員國限制或禁止境內進行基因改造生物耕作之可能性」(Directive of the European Parliament and of the Council amending Directive 2001/18/EC as regards the possibility for the Member States to restrict or prohibit the cultivation of genetically modified organisms (GMOs) in their territory),允許會員國自行決定限制或全面禁止GMO於其國境內耕作,以排除GMO產品。此變革在於,原歐洲議會與理事會2001/18/EC指令、歐洲議會與理事會第1829/2003號決議,允許全歐盟境內使用GMO種子、植物繁殖材料進行耕作;而一旦歐盟許可後,會員國除非有符合歐盟法規定例外,否則不得於其境內再為禁止、限制或障礙。 基於歐洲聯盟「輔助原則」(Principle of Subsidiarity),並考量GMO耕作議題與國家、地區及在地區域土地利用、農業結構與生態維持之關聯度高,其與歐盟GMO產品上市之授權進入內部市場仍有所不同,因此新通過之指令,提供會員國更多裁量彈性,在不影響「歐盟食品安全局」(European Food Safety Authority)之GMO風險評估結果下,會員國在歐盟允許GMO產品上市後,得自行決定是否允許GMO作物於其境內耕作。 由於歐盟與美國之「跨大西洋貿易與投資伙伴協定」(Transatlantic Trade and Investment Partnership),及歐盟與加拿大雙邊自由貿易協定(Comprehensive Economic and Trade Agreement),使歐洲民眾對於GMO產品進入歐洲產生恐慌,且在年初即受到消費者保護團體及農民聯盟之嚴厲批評,因此在前述新通過指令之立場下,歐盟農業委員會委員Phil Hogan在今年1月15日國際綠色週(International Green Week)強調,基於消費者保護,歐盟堅持產品中含有基因改造生物者,皆需進行標示。僅透過條碼掃描才能得知是否為GMO產品,此美國建議之方式仍不符合歐盟規定。
何謂「ERIC」?為加強歐盟及各成員國的研究基礎設施合作,從發展政策方面,於2002年成立「歐洲研究基礎設施策略論壇」(European Strategy Forum on Research Infrastructures, ESFRI)協助各會員國統籌規劃RIs(Research Infrastructures, RIs)的發展藍圖。在法律層面,於2009年通過「第723/2009號歐盟研究基礎設施聯盟法律架構規則」(COUNCIL REGULATION (EU) No 723/2009 of 25 June 2009 on the Community legal framework for European Research Infrastructure Consortium (ERIC),使各歐盟會員國、夥伴國家、非夥伴國家之第三國家或跨政府國際組織等對於分散的RIs整合起來後,可向歐盟執委會提出申請,依該號規則取得法律人格,成立「歐盟研究基礎設施聯盟」(European Research Infrastructure Consortium, ERIC),且可為權利得喪變更之主體,更可與他方簽訂契約或成為訴訟當事人,使其具有自我經營管理之能力。 截至目前為止(2015年9月),歐盟的RIs正式成立11個ERIC,並且透過國際間合作將RIs做更有效率之使用。國際上近年來創新研發競爭激烈,歐盟執委會為了持續推動建置世界級歐洲研究區域(European Research Area, ERA),無論在資金面、政策面及法律層面均有積極作為,在強化歐盟RIs同時促進國際科技研發合作,俾使歐盟於研發創新的領域保持世界領導之地位,歐盟未來仍會持續推動各個重要研發領域的ERIC,ERIC對於整合歐盟各國重大RIs負有重要使命。
日本發布新版之農業資料利用推動報告,並透過資料交換及利用機制確保資料共享及協作日本農林水產省於2025年9月在智慧農業網站上發布新版之農業資料利用推動(下稱報告),其內容包含2025年通過閣議決定之食材、農業、農村基本計畫,並指出為確保農業數位資料與人工智慧(下稱AI)之間的串聯應用,農業資料合作基礎平台(下稱WAGRI)的建立與資料協作、共有、提供功能是其不可或缺的要素。 報告指出,透過各式農業數位資料的蒐集與整合,諸如過往作物收成量資料、市場價格資料、土壤資料、農地資料、氣象資料等,並經過統合及分析後,可以達到提升作業效率及收益、減少勞動作業時間與器材損耗,以及降低環境負荷之效果。截至2025年9月為止,WAGRI網站上已提供高達223種農業數位資料相關的API,供農業領域從業者介接運用,並作為未來開發農業領域基礎AI模型的前置準備。 此外,報告亦指出WAGRI已於日本全國範圍內蒐集大量的農業數位資料,用以開發農業領域之基礎AI模型,並預計於2026年在WAGRI網站上提供基礎AI模型服務。未來農業領域從業者可透過WAGRI網站提供之基礎AI模型服務,輔以自身之農業數位資料,建立符合自身農業場域特性之特化型AI模型。 然而,報告亦指出不論是農業數位資料的API介接運用,還是將農業數位資料用以開發基礎AI模型,農業數位資料之法制配套仍需整備。因此,除了資料權屬等關係釐清外,報告特別提出於AI開發應用、資料共享之模式下,尚須建立「涵蓋資料整體生命週期之資料交換及利用機制」,包含資料對外公開之選擇權、資料提供之事前同意權、資料安全管理對策,以及資料刪除請求權等範圍,以確保農業數位資料在利用前的安心共享與協作。 我國政府如欲於農業領域發展基本AI模型,除應於全國範圍內蒐集大量之農業領域數位資料外,亦應建立串聯資料整體生命週期之資料交換及利用機制,以降低農業數位資料之間的協作風險。 本文為資策會科法所創智中心完成之著作,非經同意或授權,不得為轉載、公開播送、公開傳輸、改作或重製等利用行為。 本文同步刊登於TIPS網站(https://www.tips.org.tw)