美國國家標準暨技術研究院規劃建立「人工智慧風險管理框架」,並徵詢公眾對於該框架之意見

  美國國家標準暨技術研究院(National Institute of Standards and Technology, NIST)為管理人工智慧對於個人、組織以及社會所帶來之風險,於2021年7月29日提出將建立「人工智慧風險管理框架」(Artificial Intelligence Risk Management Framework, AI RMF)之規畫並徵詢公眾意見,截止日為9月15日,並預計於10月發布正式報告。

  依照NIST說明,公眾所建議之人工智慧風險管理框架,可促進人工智慧之可信賴性,其中包含如何應對並解決人工智慧於設計、發展及使用過程中所遭遇之「精確度」(accuracy)、「可解釋性」(explainability)、「偏見」(bias)等議題。此外,上開管理框架預計為非強制性、供企業自願性使用於人工智慧設計、發展、使用、衡量及評估之人工智慧標準。

  依現有公眾意見徵詢結果,其中DeepMind公司建議於人工智慧設計初期,必須預先構思整體系統之假設是否符合真正社會因果關係。舉例言之,當設計一套可預測民眾健保需求程度之系統時,如輸入參數僅考量民眾於醫療上的花費,將使僅有可負擔較高醫療費用之民眾被歸類為健保需求程度較高者,從而導致健保制度排擠經濟負擔程度較差之公民,故在設計系統時,應從預先設定之假設事實反面(counter-factual)思考並驗證是否會產生誤差或公平性之問題(例如預先思考並驗證「醫療費用支出較低之民眾是否即可被正確歸類為健保需求度低之民眾」)。惟進行上述驗證需要大量社會資料,因此DeepMind也建議NIST應建立相關機制,使這些社會資料可以被蒐集、使用。

  此外,亦有民眾建議管理框架應有明確之衡量方法以及數值指標,以供工程界遵循。同時鑒於人工智慧發展極為快速,未來可能有不同於以往之人工智慧類型出現,故亦建議NIST應思考如何在「建構一套完整且詳細之人工智慧治理框架」與「保持人工智慧治理框架之彈性與靈活性」之間取得平衡。

  最後,目前也有許多徵詢意見指出,許多人工智慧治理之目標會相互衝突。舉例言之,當NIST要求人工智慧系統應符合可解釋性,則人工智慧公司勢必需要經常抽取人工智慧系統中之「數據軌跡」(audit logs),惟數據軌跡可能被認為是使用者之個人資料,因此如何平衡或完善不同治理框架下之目標,為未來應持續關注之議題。

本文為「經濟部產業技術司科技專案成果」

相關連結
相關附件
※ 美國國家標準暨技術研究院規劃建立「人工智慧風險管理框架」,並徵詢公眾對於該框架之意見, 資訊工業策進會科技法律研究所, https://stli.iii.org.tw/article-detail.aspx?d=8727&no=67&tp=1 (最後瀏覽日:2026/01/22)
引註此篇文章
你可能還會想看
電子投票機制及法律議題之研究

世界五大專利局針對新興科技與AI技術組成聯合工作組以提高專利審查效率

  由世界五大專利局,韓國智慧財產局(KIPO)、美國專利商標局(USPTO)、歐洲專利局(EPO)、中國國家知識產權局(SIPO)與日本專利局(JPO)所組成的IP5組織於2019年6月13日在韓國仁川召開會議。   IP5的五個專利局涵蓋了全球85%的專利申請量,各國代表在會議中同意將持續透過相互調和專利審查程序以達到更有效率的全球專利系統,其中包括:新興科技的專利分類、全球專利檔案(Global Dossier)服務的持續改善、加強五大專利局間的工作分享以及調和專利審查實務與程序。在專利審查實務與程序的調和上,IP5同意針對以下項目進行調和:發明專利的統一性、引證的先前技術、專利說明書是否充分揭露的判斷,這些項目的調和目的在於減輕申請人的負擔並增加專利審查工作效率。   會議中五大專利局也同意成立新興科技與AI技術的聯合工作組以因應全球技術的發展,透過聯合工作組協調對於AI專利的審查標準,以及如何將AI技術運用於專利管理事務中。   預期透過IP5的五大專利局相互調和,將可使專利審查更有效率、審查標準趨於一致且專利資訊和數據可更容易獲取,有助於企業組織在國外的專利申請布局。 「本文同步刊登於TIPS網站(https://www.tips.org.tw)」

中華人民共和國《出版管理條例》之介紹

美國能源系統需求面管理法制議題之探討

TOP