美國國家標準暨技術研究院規劃建立「人工智慧風險管理框架」,並徵詢公眾對於該框架之意見

  美國國家標準暨技術研究院(National Institute of Standards and Technology, NIST)為管理人工智慧對於個人、組織以及社會所帶來之風險,於2021年7月29日提出將建立「人工智慧風險管理框架」(Artificial Intelligence Risk Management Framework, AI RMF)之規畫並徵詢公眾意見,截止日為9月15日,並預計於10月發布正式報告。

  依照NIST說明,公眾所建議之人工智慧風險管理框架,可促進人工智慧之可信賴性,其中包含如何應對並解決人工智慧於設計、發展及使用過程中所遭遇之「精確度」(accuracy)、「可解釋性」(explainability)、「偏見」(bias)等議題。此外,上開管理框架預計為非強制性、供企業自願性使用於人工智慧設計、發展、使用、衡量及評估之人工智慧標準。

  依現有公眾意見徵詢結果,其中DeepMind公司建議於人工智慧設計初期,必須預先構思整體系統之假設是否符合真正社會因果關係。舉例言之,當設計一套可預測民眾健保需求程度之系統時,如輸入參數僅考量民眾於醫療上的花費,將使僅有可負擔較高醫療費用之民眾被歸類為健保需求程度較高者,從而導致健保制度排擠經濟負擔程度較差之公民,故在設計系統時,應從預先設定之假設事實反面(counter-factual)思考並驗證是否會產生誤差或公平性之問題(例如預先思考並驗證「醫療費用支出較低之民眾是否即可被正確歸類為健保需求度低之民眾」)。惟進行上述驗證需要大量社會資料,因此DeepMind也建議NIST應建立相關機制,使這些社會資料可以被蒐集、使用。

  此外,亦有民眾建議管理框架應有明確之衡量方法以及數值指標,以供工程界遵循。同時鑒於人工智慧發展極為快速,未來可能有不同於以往之人工智慧類型出現,故亦建議NIST應思考如何在「建構一套完整且詳細之人工智慧治理框架」與「保持人工智慧治理框架之彈性與靈活性」之間取得平衡。

  最後,目前也有許多徵詢意見指出,許多人工智慧治理之目標會相互衝突。舉例言之,當NIST要求人工智慧系統應符合可解釋性,則人工智慧公司勢必需要經常抽取人工智慧系統中之「數據軌跡」(audit logs),惟數據軌跡可能被認為是使用者之個人資料,因此如何平衡或完善不同治理框架下之目標,為未來應持續關注之議題。

本文為「經濟部產業技術司科技專案成果」

相關連結
相關附件
※ 美國國家標準暨技術研究院規劃建立「人工智慧風險管理框架」,並徵詢公眾對於該框架之意見, 資訊工業策進會科技法律研究所, https://stli.iii.org.tw/article-detail.aspx?d=8727&no=67&tp=1 (最後瀏覽日:2026/01/24)
引註此篇文章
你可能還會想看
美國將修法全力圍堵政府資料外洩

  美國國會於今年(2009)11月18日提出「聯邦檔案安全分享法案(Secure Federal File Sharing Act)」,內容主要是限制所有政府部門員工(包含約聘制人員),在未經官方正式同意之前,不得下載、安裝或使用任何點對點傳輸(Peer to Peer, P2P)軟體。期望藉由該法案的通過實施,徹底防堵政府及相關個人機敏資料的外洩。   該法案的制定,最初來自於政府部門對其財務資料保護的要求,早於2004年白宮管理及預算辦公室(The White House Office of Management and Budget)即已建議聯邦政府的各個單位應禁止其職員使用P2P軟體,以防止資料外洩。而於將近一個月前,國會道德委員會取得多位國會議員的財務狀況、經歷及競選贊助金額,並作成調查報告,未料一位新進職員將該份未經加密保護的報告存於自家裝有前述P2P軟體的電腦硬碟中,從而導致該份報告內容全部外洩。此一事件立即對向來注重政府及個人資料保護的美國投下了震撼彈,也促使該法案正式浮出檯面。   歐此項法案的提出毫無意外地得到視聽娛樂產業界的正面支持。主因來自多數人藉由此種軟體在網際網路上分享音樂、影片或其他應用軟體,時常侵害他人的智慧財產權,而法案的內容則是要求政府部門員工無論是在工作或是家中使用P2P軟體都須取得官方授權,無疑是直接限制了上述的分享行為。娛樂業者更進一步指出,P2P軟體對資訊安全的危害在於多數人無法明確知道該軟體的運作方式,而無法對其做正確的設定,使得軟體一旦被啟動,電腦內的所有資料:包含個人的社會安全卡號碼、醫療及退稅紀錄等,就立即暴露於網際網路之中!對此,除了推動此項法案的官員大聲疾呼:「用個人自律的方式防止資料外洩已經失敗,證明國會應該有所行動。   美國錄音產業協會(Recording Industry Association of America)則是預測前述國會調查報告的外洩,將會是資安法案重整的強力催化劑。

建立G2B2C電子公文交換法制

美國國家標準暨技術研究院發布「人工智慧風險管理框架:生成式AI概況」

  美國國家標準暨技術研究院(National Institute of Standard and Technology, NIST)2024年7月26日發布「人工智慧風險管理框架:生成式AI概況」(Artificial Intelligence Risk Management Framework: Generative Artificial Intelligence Profile),補充2023年1月發布的AI風險管理框架,協助組織識別生成式AI(Generative AI, GAI)可能引發的風險,並提出風險管理行動。GAI特有或加劇的12項主要風險包括: 1.化學、生物、放射性物質或核武器(chemical, biological, radiological and nuclear materials and agents, CBRN)之資訊或能力:GAI可能使惡意行為者更容易取得CBRN相關資訊、知識、材料或技術,以設計、開發、生產、使用CBRN。 2.虛假內容:GAI在回應輸入內容時,常自信地呈現錯誤或虛假內容,包括在同一情境下產出自相矛盾的內容。 3.危險、暴力或仇恨內容:GAI比其他技術能更輕易產生大規模煽動性、激進或威脅性內容,或美化暴力內容。 4.資料隱私:GAI訓練時需要大量資料,包括個人資料,可能產生透明度、個人資料自主權、資料違法目的外利用等風險。 5.環境影響:訓練、維護和運行GAI系統需使用大量能源而影響碳排放。 6.偏見或同質化(homogenization):GAI可能加劇對個人、群體或社會的偏見或刻板印象,例如要求生成醫生、律師或CEO圖像時,產出女性、少數族群或身障人士的比例較低。 7.人機互動:可能涉及系統與人類互動不良的風險,包括過度依賴GAI系統,或誤認GAI內容品質比其他來源內容品質更佳。 8.資訊完整性:GAI可能無意間擴大傳播虛假、不準確或誤導性內容,從而破壞資訊完整性,降低公眾對真實或有效資訊的信任。 9.資訊安全:可能降低攻擊門檻、更輕易實現自動化攻擊,或幫助發現新的資安風險,擴大可攻擊範圍。 10.智慧財產權:若GAI訓練資料中含有受著作權保護的資料,可能導致侵權,或在未經授權的情況下使用或假冒個人身分、肖像或聲音。 11.淫穢、貶低或虐待性內容:可能導致非法或非自願性的成人私密影像或兒童性虐待素材增加,進而造成隱私、心理、情感,甚至身體上傷害。 12.價值鏈和組件整合(component integration):購買資料集、訓練模型和軟體庫等第三方零組件時,若零組件未從適當途徑取得或未經妥善審查,可能導致下游使用者資訊不透明或難以問責。   為解決前述12項風險,本報告亦從「治理、映射、量測、管理」四大面向提出約200項行動建議,期能有助組織緩解並降低GAI的潛在危害。

英國將以NHS基因體醫學服務續行十萬基因體計畫

  英國政府所提出的「10萬基因體計畫(100,000 Genomes Project)」將於2018年底達成目標,而將以NHS基因體醫學服務(NHS Genomic Medicine Service)作為續行計畫,以促進個人化醫療的發展。   NHS基因體醫療服務的目的在於促進罕見疾病與癌症的診斷以及患者治療的效率,並預期在未來5年達到五百萬組基因定序,以提供具備全面性(comprehensive)以及公正性(equitable)的基因檢測。為達此目的,NHS基因體醫療服務包含5個主要內涵:連結基因體研究中心以成立國家基因體實驗室服務(national genomic laboratory service)、新的國家基因體實驗室檢測文庫(new National Genomic Test Directory)、全基因體定序的相關規範,並與英國基因體公司(Genomic England)合作開發資訊基礎設施(informatics infrastructure)、臨床基因體醫學服務(clinical genomics medicine services)以及發展基因體醫學中心服務(Genomic Medicine Centre service)、NHS負擔統合性的監管職責。   在以NHS基因體醫療服務作為續行計畫的狀況下,若合格的研發人員欲以患者的基因資料進行新藥或是新治療方式的開發需事先取得患者的同意。另外,從2019年開始,全基因定序將被納入特定患者的治療過程中,如罹患特定罕見疾病或具有治癒困難性的成年患者以及所有患有嚴重疾病的孩童患者,以加速疾病的診斷以及減少侵入性治療的次數。

TOP