美國國家標準暨技術研究院規劃建立「人工智慧風險管理框架」,並徵詢公眾對於該框架之意見

  美國國家標準暨技術研究院(National Institute of Standards and Technology, NIST)為管理人工智慧對於個人、組織以及社會所帶來之風險,於2021年7月29日提出將建立「人工智慧風險管理框架」(Artificial Intelligence Risk Management Framework, AI RMF)之規畫並徵詢公眾意見,截止日為9月15日,並預計於10月發布正式報告。

  依照NIST說明,公眾所建議之人工智慧風險管理框架,可促進人工智慧之可信賴性,其中包含如何應對並解決人工智慧於設計、發展及使用過程中所遭遇之「精確度」(accuracy)、「可解釋性」(explainability)、「偏見」(bias)等議題。此外,上開管理框架預計為非強制性、供企業自願性使用於人工智慧設計、發展、使用、衡量及評估之人工智慧標準。

  依現有公眾意見徵詢結果,其中DeepMind公司建議於人工智慧設計初期,必須預先構思整體系統之假設是否符合真正社會因果關係。舉例言之,當設計一套可預測民眾健保需求程度之系統時,如輸入參數僅考量民眾於醫療上的花費,將使僅有可負擔較高醫療費用之民眾被歸類為健保需求程度較高者,從而導致健保制度排擠經濟負擔程度較差之公民,故在設計系統時,應從預先設定之假設事實反面(counter-factual)思考並驗證是否會產生誤差或公平性之問題(例如預先思考並驗證「醫療費用支出較低之民眾是否即可被正確歸類為健保需求度低之民眾」)。惟進行上述驗證需要大量社會資料,因此DeepMind也建議NIST應建立相關機制,使這些社會資料可以被蒐集、使用。

  此外,亦有民眾建議管理框架應有明確之衡量方法以及數值指標,以供工程界遵循。同時鑒於人工智慧發展極為快速,未來可能有不同於以往之人工智慧類型出現,故亦建議NIST應思考如何在「建構一套完整且詳細之人工智慧治理框架」與「保持人工智慧治理框架之彈性與靈活性」之間取得平衡。

  最後,目前也有許多徵詢意見指出,許多人工智慧治理之目標會相互衝突。舉例言之,當NIST要求人工智慧系統應符合可解釋性,則人工智慧公司勢必需要經常抽取人工智慧系統中之「數據軌跡」(audit logs),惟數據軌跡可能被認為是使用者之個人資料,因此如何平衡或完善不同治理框架下之目標,為未來應持續關注之議題。

本文為「經濟部產業技術司科技專案成果」

相關連結
相關附件
※ 美國國家標準暨技術研究院規劃建立「人工智慧風險管理框架」,並徵詢公眾對於該框架之意見, 資訊工業策進會科技法律研究所, https://stli.iii.org.tw/article-detail.aspx?d=8727&no=67&tp=1 (最後瀏覽日:2026/02/22)
引註此篇文章
你可能還會想看
馬來西亞擬於2007年設立智慧財產權法院

  馬來西亞「內國貿易及消費事務部」( Domestic Trade and Consumer Affairs Ministry )部長 Datuk Shafie 在五月底舉行的智慧財產權研討會上表示,為加速法院審理智財權侵權案件的速度,以有效打擊此等違法行為,馬來西亞政府擬於 2007 年設立智慧財產權法院( Intellectual Property Court )。   近年來,馬來西亞政府持續修正智慧財產權相關法律以強化實務執法的效果,惟修法的成效相當程度取決於法官對於新法的學習及認知能力,此次設立智慧財產權法院將可培養專業法官以彌補目前法官在智慧產財權本職學能上的不足。   日本於 2004 年 6 月已通過「智慧財產權高等法院設置法」(知的財產高等裁判所設置法),新制並已於 2005 年 4 月正式實施;而我國亦於今年二月間審議通過「智慧財產法院組織法草案」及「智慧財產案件審理法草案」,目前已送請立法院審議。

世界衛生組織發布歐洲區域人工智慧於醫療系統準備情況報告,責任規則為最重要之關鍵政策因素

世界衛生組織發布歐洲區域人工智慧於醫療系統準備情況報告,責任規則為最重要之關鍵政策因素 資訊工業策進會科技法律研究所 2025年12月18日 世界衛生組織(World Health Organization, WHO)於2025年11月19日發布「人工智慧正在重塑醫療系統:世衛組織歐洲區域準備情況報告」(Artificial intelligence is reshaping health systems: state of readiness across the WHO European Region)[1],本報告為2024年至2025年於WHO歐洲區域醫療照護領域人工智慧(AI for health care)調查結果,借鑒50個成員國之經驗,檢視各國之國家戰略、治理模式、法律與倫理框架、勞動力準備、資料治理、利益相關者參與、私部門角色以及AI應用之普及情況,探討各國如何應對AI於醫療系統中之機會與挑戰。其中責任規則(liability rules)之建立,為成員國認為係推動AI於醫療照護領域廣泛應用之最重要關鍵政策因素,因此本報告建議應明確開發者、臨床醫生、資料提供者與醫療機構之責任,透過救濟與執法管道以保護病患與醫療系統之權益。 壹、事件摘要 本報告發現調查對象中僅有8%成員國已發布國家級醫療領域特定AI策略(national health-specific AI strategy),顯示此處仍有相當大之缺口需要補足。而就醫療領域AI之法律、政策與指導方針框架方面,46%之成員國已評估於現有法律及政策相對於醫療衛生領域AI系統不足之處;54%之成員國已設立監管機構以評估與核准AI系統;惟僅有8%之成員國已制定醫療領域AI之責任標準(liability standards for AI in health),更僅有6%之成員國就醫療照護領域之生成式AI系統提出法律要求。依此可知,成員國對於AI政策之優先事項通常集中於醫療領域AI系統之採購、開發與使用,而對個人或群體不利影響之重視與責任標準之建立仍然有限。於缺乏明確責任標準之情況下,可能會導致臨床醫師對AI之依賴猶豫不決,或者相反地過度依賴AI,從而增加病患安全風險。 就可信賴AI之醫療資料治理方面(health data governance for trustworthy AI),66%成員國已制定專門之國家醫療資料戰略,76%成員國已建立或正在制定醫療資料治理框架,66%成員國已建立區域或國家級醫療資料中心(health data hub),30%成員國已發布關於醫療資料二次利用之指引(the secondary use of health data),30%成員國已制定規則,促進以研究為目的之跨境共享醫療資料(cross-border sharing of health data for research purposes)。依此,許多成員國已在制定國家醫療資料戰略與建立治理框架方面取得顯著進展,惟資料二次利用與跨境利用等領域仍較遲滯,這些資料問題仍需解決,以避免產生技術先進卻無法完全滿足臨床或公衛需求之工具。 就於醫療照護領域採用AI之障礙,有高達86%之成員國認為,最主要之障礙為法律之不確定性(legal uncertainty),其次之障礙為78%之成員國所認為之財務可負擔性(financial affordability);依此,雖AI之採用具有前景,惟仍受到監管不確定性、倫理挑戰、監管不力與資金障礙之限制;而財務上之資金障礙,包括高昂之基礎設施成本、持續員工培訓、有限之健保給付與先進AI系統訂閱費用皆限制AI之普及,特別於規模較小或資源有限之醫療系統中。 就推動AI於醫療照護領域廣泛應用之關鍵政策因素,有高達92%之成員國認為是責任規則(liability rules),其次有90%之成員國認為是關於透明度、可驗證性與可解釋性之指引。依此,幾乎所有成員國皆認為,明確AI系統製造商、部署者與使用者之責任規則為政策上之關鍵推動因素,且確保AI解決方案之透明度、可驗證性與可解釋性之指引,也被認為是信任AI所驅動成果之必要條件。 貳、重點說明 因有高達9成之成員國認為責任規則為推動AI於醫療照護領域廣泛應用之關鍵政策因素,為促進AI應用,本報告建議應明確開發者、臨床醫生、資料提供者與醫療機構之責任,並建立相應機制,以便於AI系統造成損害時及時補救與追究責任,此可確保AI生命週期中每個參與者都能瞭解自身之義務,責任透明,並透過可及之救濟與執法管道以保護病患與醫療系統之權益;以及可利用監管沙盒,使監管機構、開發人員與醫療機構能夠在真實但風險較低之環境中進行合作,從而於監管監督下,於廣泛部署前能及早發現安全、倫理與效能問題,同時促進創新。 此外,WHO歐洲區域官員指出,此次調查結果顯示AI於醫療領域之革命已開始,惟準備程度、能力與治理水準尚未完全跟進,因此呼籲醫療領域之領導者與決策者們可考慮往以下四個方向前進[2]: 1.應有目的性地管理AI:使AI安全、合乎倫理與符合人權; 2.應投資人才:因科技無法治癒病人,人才是治癒病人之根本; 3.需建構可信賴之資料生態系:若大眾對資料缺乏信任,創新就會失敗; 4.需進行跨國合作:AI無國界,合作亦不應受限於國界。 參、事件評析 AI於醫療系統之應用實際上已大幅開展,就歐洲之調查可知,目前雖多數國家已致力於AI於醫材監管法規與資料利用規則之建立,據以推動與監管AI醫療科技之發展,惟由於醫療涉及患者生命身體之健康安全,因此絕大多數國家皆同意,真正影響AI於醫療領域利用之因素,為責任規則之建立,然而,調查結果顯示,實際上已建立醫療領域AI之責任標準者,卻僅有8%之成員國(50個國家中僅有4個國家已建立標準),意味著其為重要之真空地帶,亟待責任法制上之發展與填補,以使廠商願意繼續開發先進AI醫療器材、醫療從業人員願意利用AI醫療科技增進患者福祉,亦使患者於受害時得以獲得適當救濟。亦即是,當有明確之責任歸屬規則,各方當事人方能據以瞭解與評估將AI技術應用於醫療可能帶來之風險與機會,新興AI醫療科技才能真正被信任與利用,而帶來廣泛推廣促進醫療進步之效益。由於保護患者之健康安全為醫療領域之普世價值,此項結論應不僅得適用於歐洲,對於世界各國亦應同樣適用,未來觀察各國於AI醫療領域之責任規則發展,對於我國推廣AI醫療之落地應用亦應具有重要參考價值。 [1] Artificial intelligence is reshaping health systems: state of readiness across the WHO European Region, WHO, Nov. 19, 2025, https://iris.who.int/items/84f1c491-c9d0-4bb3-83cf-3a6f4bf3c3b1 (last visited Dec. 9, 2025). [2] Humanity Must Hold the Pen: The European Region Can Write the Story of Ethical AI for Health, Georgia Today, Dec. 8, 2025,https://georgiatoday.ge/humanity-must-hold-the-pen-the-european-region-can-write-the-story-of-ethical-ai-for-health/ (last visited Dec. 9, 2025).

美國聯邦審計署發布先進空中交通議題研究報告,將有利於航空轉型

  美國聯邦審計署(Government Accountability Office, GAO)於2022年5月9日發布「航空轉型:經利害關係人確認之先進空中交通議題」(Transforming Aviation: Stakeholders Identified Issues to Address for 'Advanced Air Mobility')研究報告。未來,先進空中交通(Advanced Air Mobility, AAM)服務可透過小型或高度自動化(highly-automated)電動垂直起降航空器(eVTOL)翱翔於天際,不僅可提供載人或載物服務、減少交通壅塞,並可應用於救援與醫療運輸等領域。GAO透過訪談36位利害關係人,意識到AAM發展關鍵在於相關法制環境之整備速度。基此,GAO於研究報告中,整理當前各AAM新創業者於開發與落實上面臨之4大問題,分別簡述如下: (1)航空器檢定標準:美國聯邦航空總署(Federal Aviation Administration, FAA)對於航空器之檢定規範,目前尚未涵蓋具備AAM新功能之載具,如電力推進或垂直起降等。 (2)起降場與電力之基礎設施:FAA尚未制定垂直機場降落設施,及航空器電池充電需求之電力基礎設施相關標準。 (3)提高公眾載具安全性接受度:AAM產業須證明此類航空器之安全性、可靠性、低噪音與商用可行性,以支持該產業之發展與成長。 (4)作業人員所需之各種培訓與認證標準:飛行員與維修技術作業人員需接受相關新功能培訓。惟利害關係人指出可能面臨高教育成本、缺乏工作場域多樣性、機會意識(awareness of opportunities)不足,及培訓能力有限等問題。

FDA公布修訂行動醫療APP指導原則

  美國於2015年2月5日公布修訂之行動醫療應用程式指導原則(Mobile Medical Applications, Guidance for Industry and Food and Drug Administration Staff),取代原先在2013年9月公布之版本。本次的修訂主要是將美國2015年2月9日公布之醫療設備資訊系統、醫療影像儲存設備、及醫療影像傳輸設備指導原則(Medical Device Data Systems, Medical Image Storage Devices, and Medical Image Communications Devices, Guidance for Industry and Food and Drug Administration Staff)規範納入其中。   2015年2月9日公布之醫療設備資訊系統、醫療影像儲存設備及醫療影像傳輸設備指導原則,擬降低FDA的管理程度,採用風險性評估方式,針對部分醫療設備資訊系統、醫療影像儲存設備及醫療影像傳輸設備等三種屬於第一級低風險之醫療器材,得不受ㄧ般管制,例如不需要登記、上市後報告及品質系統法規遵守等。原先,美國於2011年先將醫療設備資訊系統從第三級之高風險醫療器材,降低為第一級低風險之醫療器材,但經過長期間的使用經驗後,FDA認為,此等醫療器材設備在健康照護中十分重要,但相對於其他醫療器材,風險則較低,因此,將放寬程序。   行動健康應用程式亦可能歸類為上述之醫療器材,因此,為與上述的指導原則相符合,對於行動健康應用程式的審查亦作部分放寬。例如,當應用程式與資療資訊系統結合,而成為應受規範之醫療器材時,原先之規定為應進入醫療器材之規範程序,但新修訂之指導原則,則再放寬。僅將涉及積極的病人監測或醫療器材數據分析時,才需要回歸醫療器材之審查方式,其他醫療資訊系統若僅為儲存、傳輸等功能,而非主要提供診斷、治療等功能時,則可以不受醫療器材之規範限制,因風險程度較低,因此改由FDA視個案審查即可。為鼓勵相關產業的發展,FDA將風險性低之醫裁降低管理程度,其後續發展值得觀察。

TOP