美國國家標準暨技術研究院規劃建立「人工智慧風險管理框架」,並徵詢公眾對於該框架之意見

  美國國家標準暨技術研究院(National Institute of Standards and Technology, NIST)為管理人工智慧對於個人、組織以及社會所帶來之風險,於2021年7月29日提出將建立「人工智慧風險管理框架」(Artificial Intelligence Risk Management Framework, AI RMF)之規畫並徵詢公眾意見,截止日為9月15日,並預計於10月發布正式報告。

  依照NIST說明,公眾所建議之人工智慧風險管理框架,可促進人工智慧之可信賴性,其中包含如何應對並解決人工智慧於設計、發展及使用過程中所遭遇之「精確度」(accuracy)、「可解釋性」(explainability)、「偏見」(bias)等議題。此外,上開管理框架預計為非強制性、供企業自願性使用於人工智慧設計、發展、使用、衡量及評估之人工智慧標準。

  依現有公眾意見徵詢結果,其中DeepMind公司建議於人工智慧設計初期,必須預先構思整體系統之假設是否符合真正社會因果關係。舉例言之,當設計一套可預測民眾健保需求程度之系統時,如輸入參數僅考量民眾於醫療上的花費,將使僅有可負擔較高醫療費用之民眾被歸類為健保需求程度較高者,從而導致健保制度排擠經濟負擔程度較差之公民,故在設計系統時,應從預先設定之假設事實反面(counter-factual)思考並驗證是否會產生誤差或公平性之問題(例如預先思考並驗證「醫療費用支出較低之民眾是否即可被正確歸類為健保需求度低之民眾」)。惟進行上述驗證需要大量社會資料,因此DeepMind也建議NIST應建立相關機制,使這些社會資料可以被蒐集、使用。

  此外,亦有民眾建議管理框架應有明確之衡量方法以及數值指標,以供工程界遵循。同時鑒於人工智慧發展極為快速,未來可能有不同於以往之人工智慧類型出現,故亦建議NIST應思考如何在「建構一套完整且詳細之人工智慧治理框架」與「保持人工智慧治理框架之彈性與靈活性」之間取得平衡。

  最後,目前也有許多徵詢意見指出,許多人工智慧治理之目標會相互衝突。舉例言之,當NIST要求人工智慧系統應符合可解釋性,則人工智慧公司勢必需要經常抽取人工智慧系統中之「數據軌跡」(audit logs),惟數據軌跡可能被認為是使用者之個人資料,因此如何平衡或完善不同治理框架下之目標,為未來應持續關注之議題。

本文為「經濟部產業技術司科技專案成果」

相關連結
相關附件
※ 美國國家標準暨技術研究院規劃建立「人工智慧風險管理框架」,並徵詢公眾對於該框架之意見, 資訊工業策進會科技法律研究所, https://stli.iii.org.tw/article-detail.aspx?d=8727&no=67&tp=1 (最後瀏覽日:2026/02/08)
引註此篇文章
你可能還會想看
英國皇家內科醫學院等三個團體聯合發布基因檢測醫療之指引建議書

  近年隨基因檢測技術成熟及成本下降的影響,基於醫療診斷或照護目的,而對於血液、其他體液、細胞或DNA所進行之基因檢測行為已有逐漸增多的趨勢,惟基因資訊使用本身往往容易觸及倫理、道德或法律層面的爭議,導致專業醫療人員在實際為檢測時容易產生法規遵循上的困難;因此,若能有明確的程序或標準可供依循,將能大幅增進基因檢測技術的商業運用價值。   1. 有鑑於此,三個英國醫療團體-英國皇家內科醫學院(Royal College of Physicians)、英國皇家病理科醫學院(Royal College of Pathologists)及英國人類遺傳協會(British Society for Human Genetics)於今(2011)年9月聯合公布了一份『診療性基因使用行為的同意及秘密性:基因檢測及基因資訊的分享指引』報告書(Consent and confidentiality in clinical genetic practice:Guidance on genetic testing and sharing genetic information)。該建議書之主要目的即在於指引醫療人員在使用基因資料及樣本時,應如何遵循相關的法律規範,包括1998年資料保護法(the Data Protection Act of 1998)及人類組織法(the Human Tissue Act)等;內容上則涵蓋病患同意、基因醫療行為、家族史與醫療資訊的秘密性,以及當病患所提供之基因樣本可能作為研究用途時,應如何告知等事項。   建議書中特別強調當病患選擇接受基因檢測以獲得更好的診療建議時,基因資訊也開始對病患個人及其家族成員帶來的風險。基此,該報告對基因檢測行為提出三項主要建議:1. 基因檢測所得到的家族史及診斷資訊只有在其他家族成員出現健康照護(healthcare)需求時,才能進行共享,且必須在醫療人員不違反保密義務的前提下進行。2. 醫療人員應當告知病患包括基因調查對其近親屬的潛在好處、部分基因訊息可能會提供給家族親屬、基因檢測可能會得到不確定或非預期的發現、其所提供之樣本及基因資訊將如何被運用,以及該樣本若對於該類型之檢測具有相當重要性時,其檢測結果可能會被收錄於國家資料庫以作為未來醫療研究之用。3. 由於醫療干預行為可能會導致基因診斷(genetic diagnoses)結果的改變,所以應該由病患本人或專業醫師直接告知其親屬,此誤差所可能導致的遺傳風險(例如血友病患者的基因診斷結果發生誤差,可能導致其近親屬生下患有血友病的下一代)。   目前基因檢測技術雖已趨向商業化及普及化發展,但由於基因訊息一般被界定為個人隱私資訊,因此在使用、分享及儲存上有相當之限制規範,並造成醫療人員遵循上的難度。而英國皇家內科醫學院等三個醫療團體所公佈的這份指引建議書,在內容上聚焦於告知病患的程序及病患的同意,同時擬定明確的流程圖及同意表格供各醫療人員參考使用,相信對於未來英國基因檢測技術的普及化會有相當正面之幫助。

智慧財產風險管理與公司治理的匯流

污者自付 中國大陸擬徵生態稅

  中國大陸能源基金會副主席楊富強日前透露,能源基金會、世界自然基金會與國家財政部正在研討開徵「生態稅」。目前,正在為能源對環境的影響成本進行核算,年內相關草案將出爐。   據中國大陸媒體報道,世界自然基金會氣候變化與能源項目負責人甘霖表示,生態稅主要目的就是為了保護生態環境和自然資源,向所有因其生產和消費而造成外部不經濟的納稅人課徵的稅收。    生態稅涉及所有消費化學能源的行業,讓企業去承擔環境成本,實現生態和資源價值的合理補償。目前,生態稅的標準正在研討中,不同的行業對應不同的稅收標準。這個標準與企業的排放有關。根據企業排放量的多少,制定一個限定的比例,再乘以企業的年生產量。也就是說,「企業污染的越多,承擔的環境成本就會越高。」    甘霖指出,目前綠色能源的環境績效還不能完全轉化為經濟效益,綠色能源單位建設投資高及利用率偏低,造成綠色能源價格較高,從而無法與傳統能源競爭,成為影響綠色能源發展的一個瓶頸。現在運用稅收手段,徵收生態稅,就是要使傳統能源價格升高,從而縮小傳統能源與綠色能源之間的差價,推動全社會積極使用綠色能源。

OECD發布「促進人工智慧風險管理互通性的通用指引」研究報告

經濟合作發展組織(Organisation for Economic Co-operation and Development,下稱OECD)於2023年11月公布「促進AI風險管理互通性的通用指引」(Common Guideposts To Promote Interoperability In AI Risk Management)研究報告(下稱「報告」),為2023年2月「高階AI風險管理互通框架」(High-Level AI Risk Management Interoperability Framework,下稱「互通框架」)之延伸研究。 報告中主要說明「互通框架」的四個主要步驟,並與國際主要AI風險管理框架和標準的風險管理流程進行比較分析。首先,「互通框架」的四個步驟分別為: 1. 「定義」AI風險管理範圍、環境脈絡與標準; 2. 「評估」風險的可能性與危害程度; 3. 「處理」風險,以停止、減輕或預防傷害; 4.「治理」風險管理流程,包括透過持續的監督、審查、記錄、溝通與諮詢、各參與者的角色和責任分配、建立問責制等作法,打造組織內部的風險管理文化。 其次,本報告指出,目前國際主要AI風險管理框架大致上與OECD「互通框架」的四個主要步驟一致,然因涵蓋範圍有別,框架間難免存在差異,最大差異在於「治理」功能融入框架結構的設計、其細項功能、以及術語等方面,惟此些差異並不影響各框架與OECD「互通框架」的一致性。 未來OECD也將基於上述研究,建立AI風險管理的線上互動工具,用以協助各界比較各種AI風險管理框架,並瀏覽多種風險管理的落實方法、工具和實踐方式。OECD的努力或許能促進全球AI治理的一致性,進而減輕企業的合規負擔,其後續發展值得持續追蹤觀察。

TOP