世界智慧財產權組織(WIPO)於2021年9月20日發布了第14版的《全球創新指數報告》(Global Innovation Index, GII),本報告以81項指標對全球132個經濟體的創新生態系進行評鑑,前十名分別為瑞士、瑞典、美國、英國、韓國、荷蘭、芬蘭、新加坡、丹麥、德國,亞洲表現最好的是韓國。
本報告指出,在COVID-19疫情期間,世界各國政府和企業對創新的投資並未減少,且健康相關產業、綠色相關產業、數位科技相關產業最受到矚目。
此外,今年的報告中新增了一個專章「全球創新追蹤」(global innovation tracker),其中針對科學與創新投資(science and innovation investments)這一組指標進一步的分析發現,2020年全球在科學出版數量增加了7.6%、在研發支出增加了8.5%、在創業投資增加了5.8%、在國際專利申請數量增加了3.5%。與2019年相比,國際專利申請數量以中國大陸增加16%最多,美國、韓國的申請數量也都穩定成長,但日本與多數歐洲國家的申請數量皆屬下降;而專利申請的技術領域以醫療技術、製藥技術、生物技術為主。整體而言,雖然疫情為全球經濟帶來嚴峻挑戰,但各國對於科學與創新的投資經費仍持續增加。
手機大廠諾基亞( Nokia )將在下一代智慧手機的瀏覽器中,採用蘋果電腦的開放原始碼軟體。其預定在今年六月推出 Series 60 智慧手機軟體包,其中的瀏覽器將整合數個同於蘋果 Safari 網路瀏覽器的開放原始碼科技– WebCore 和 JavaScriptCore 。 Safari 是以開放原始碼 K Desk Environment 之 Konquerer 瀏覽器的 KHTML 與 KJS 為基礎。 諾基亞表示,採用開放碼軟體後,將更方便開發商修改定作其新瀏覽器,並將提供新的使用者功能。諾基亞並且表示,未來仍將與蘋果電腦合作開放原始碼軟體,並積極投入開放原始碼社群。諾基亞對開放原始碼的興趣,在瀏覽器部門特別明顯。兩年前,該公司投資 Mozilla 基金會的 Minimo 計劃,創造一種根據 Mozilla Gecko 翻譯引擎的電話瀏覽器。 Minimo 團隊準備在今夏推出針對微軟 Windows CE 作業系統的 0.1 版瀏覽器。
日本數位市場競爭中期展望報告提出數位市場競爭短中期策略日本數位市場競爭本部(デジタル市場競争本部)於2020年6月發布了「數位市場競爭中期展望報告」(デジタル市場競争に係る中期展望レポート案),該報告認為大型數位平台業者透過龐大的用戶資料,不斷地(1)擴大並連結用戶、(2)垂直整合上下游產業並(3)從虛擬鎖定實體的銷售,對市場形成動態競爭(ダイナミック競争)結果。此一結果將導致數位市場極易形成掠奪性定價或併購的風險、資料集中的風險、資料可靠性的風險,甚至是個人價值判斷的風險。 為促進數位市場的治理與信任,該報告提出了以下短期與中長期的政策方向: 鼓勵企業數位轉型以增加數位市場的多樣性:推廣數位轉型指標、擴大沙盒制度適用、加速數位政府戰略。 建立數位市場競爭制度:運用經濟分析強化競爭管制、推動《數位平臺交易透明法》(デジタルプラットフォーム取引透明化法)法制化、建立大型數位平台調查機制。 建構去中心化的資料治理技術:透過資料持有、交換的「去人工干預」,形成一個可信任的網路世界。 該報告已於2020年8月7日完成公眾意見募集,預計於2020年年底前提出最終報告。目前日本新經濟聯盟認為,高頻率的競爭策略以及智慧化交易模式下的反壟斷政策,除了不正競爭的禁止外,政府更應著重在透明化檢視機制的建立。此外報告目前並未處理到平台資料治理的課題,聯盟對此認為政府應更積極地從資料壟斷的概念,調整數位市場准入的障礙。
中國對抗殭屍網路與木馬法制策略研析 歐洲專利局發布人工智慧與機器學習專利審查指南正式生效歐洲專利局(European Patent Office, 下稱EPO)於2018年11月1日發佈新版專利審查指南已正式生效。此次新版的焦點為Part G, Chapter II, 3.3.1關於人工智慧(Artificial Intelligence, AI)與機器學習(Machine Learning, ML)的可專利性審查細則。 在新版審查指南Part G, Chapter II, 3.3中指出數學方法本身為法定不予專利事項,然而人工智慧和機器學習是利用運算模型和演算法來進行分類、聚類、迴歸、降維等發明,例如:神經網路、遺傳演算法、支援向量機(Support Vector Machines, SVM)、K-Means演算法、核迴歸和判別分析,不論它們是否能夠藉由數據加以訓練,此類運算模型和演算法本身,因具有抽象的數學性質而不具專利適格性。 其中,EPO亦針對人工智慧和機器學習相關應用舉例下列特殊情形,說明可否具備發明技術特徵: (一)可能具技術性 在心臟監測儀器運用神經網路辨別異常心跳,此種技術為具有技術貢獻。 基於低階特徵(例如:影像邊緣、像素數值)的數位影像、影片、音頻或語言訊號分類,屬於分類演算法的技術應用。 (二)可能不具技術性 根據文字內容進行分類,本身不具技術目的,而僅是語言學的目的(T 1358/09) 對抽象數據或電信網路數據紀錄進行分類,但未說明所產生分類的技術用途,亦被認定本身不具技術目的,即使該分類演算法的數據價值高(例如:穩健性)(T 1784/06)。 在新版審查指南中亦指出,當分類方法用於技術目的,其產生之訓練集(training set)和訓練分類器(training the classifier)的步驟,則能被視為發明的技術特徵。 近年來,人工智慧技術的應用分佈在我們的生活中,無論是自駕車、新藥開發、語音辨識、醫療診斷等,隨著人工智慧和機器學習技術快速發展,新版的審查指南將為此技術訂定可專利性標準,EPO未來要如何評判人工智慧和機器學習相關技術,將可透過申請案之審查結果持續進行關注。 「本文同步刊登於TIPS網站(https://www.tips.org.tw )」