歐盟執委會及歐盟智慧財產局(European Union Intellectual Property Office, EUIPO)於2022年1月10日共同宣布啟動第二輪的歐盟中小企業基金(EU SME Fund),以強化中小企業的智財管理與布局。
歐盟於2020年11月發布了《智慧財產權行動計畫(Action Plan on Intellectual Property)》,並推出中小企業基金,在2021年間共補助12,989家的中小企業,補助金額達680萬歐元。由於成效不錯,因此歐盟推出第二輪的中小企業基金,其金額高達4700萬歐元,補助期間為2022年至2024年。歐盟指出,中小企業在保護創新上需要有相關的工具及資金,目前規劃的補助項目如下:
歐盟希望透過上述的方式,協助中小企業在疫情期間加速數位轉型,強化無形資產的智財布局和管理,以提升歐盟中小企業的競爭力。
「本文同步刊登於TIPS網站(https://www.tips.org.tw)」
德國電信監理機關Bundesnetzagentur (BNetzA)於2010年5月宣告完成包括800MHz、1.8GHz、2GHz和2.6GHz等多頻帶中共計41塊頻段的頻譜拍賣,成為歐洲第一個完成數位紅利頻譜重分配的國家。 本次拍賣主要由四個行動營運商(E-Plus、T-Mobile、Vodafone、O2)參與投標,歷經224回合競標,挹注政府約43.8億歐元收入,遠低於之前預估的80億歐元,也遠低於10年前的3G頻譜500億歐元。 只有三家業者(T-Mobile、Vodafone、O2)取得數位紅利800MHz頻譜使用權;未得標的E-Plus公司則早已表達意願,將租用其中一個得標者的新網路頻寬,以使用數位紅利。 本次拍賣並沒有產生新的市場參進者,此狀況讓那些希望開放新頻譜即可刺激新的市場競爭的人頗為失望。惟BNetzA以為,目前市場上已經有約100家的MVNO業者和為數眾多的次品牌服務經營者在競爭,監管機關看不出應執行拍賣條款中「應有利新的市場參進者」的理由。 市場主導者T-Mobile已經宣稱,將率先於今年開始利用800MHz測試發展LTE服務。但由於在800MHz段部署LTE網路將與歐洲其他國家(主要指TeliaSonera公司在瑞典和挪威)早先同意於2.6GHz佈建的網路技術有異,而在密集的城市環境中,在800MHz與2.6GHz頻段同時部署LTE被視為是相當理想的網路佈建策略,歐盟現階段正在想辦法調和兩個頻段的和諧使用策略中。
歐盟執委會公布《可信賴的AI政策及投資建議》歐盟執委會於2018年6月成立人工智慧高級專家組(The High-Level Expert Group on Artificial Intelligence, AI HLEG),主要負責兩項工作:(1)人工智慧倫理準則;(2)人工智慧政策與投資建議。並於2019年4月8日提出《可信賴的人工智慧倫理準則》(Ethics Guidelines for Trustworthy AI),2019年6月公布之《可信賴的AI政策及投資建議》(Policy and Investment Recommendations for Trustworthy Artificial Intelligence)則是人工智慧高級專家組所交付之第二項具體成果。 該報告主要分為兩大部分,首先第一部分是要透過可信賴的人工智慧建立對歐洲之正面影響,內容提及人工智慧應保護人類和社會,並促進歐洲公司各部門利用人工智慧及技術移轉,而公部門則扮演人工智慧增長及創新之催化劑,以確保歐洲具有世界一流之研究能力;第二部分則是影響歐洲各成員國建立可信賴之人工智慧,內容則提及將發展人工智慧相關基礎設施、教育措施、政策規範及資金投資,同時合法、有道德的使用各項數據。 在本報告中關於法規面的建議則是進一步制定政策和監管框架,確保人工智慧在尊重人權、民主及創新下發展,因此將建立人工智慧政策制定者、開發者及用戶間的對話機制,若是遇到將對社會或是人類產生重大影響之敏感性人工智慧系統,除透過歐洲人工智慧聯盟(The European AI Alliance)進行對話之外,也需要在尊重各成員國之語言及文化多樣性下展開協調機制。另外,報告中也特別提到如果政府以「保護社會」為由建立一個普遍的人工智慧監督系統是非常危險的作法,政府應該承諾不對個人進行大規模監視,並在遵守法律及基本權利下進行人工智慧系統之發展。
德國聯邦資訊技術,電信和新媒體協會針對AI及自動決策技術利用提出建議指南德國聯邦資訊技術,電信和新媒體協會於2018年2月6日在更安全的網路研討會中針對利用人工智慧及自動決策技術利用提出建議指南(Empfehlungen für den verantwortlichen Einsatz von KI und automatisierten Entscheidungen),旨在提升企業數位化與社會責任,並提升消費者權益保護。 本份指南提出六項建議: 促進企業內部及外部訂定相關準則 例如規定公司在利用演算法和AI時,必須將影響評估列入開發流程,並列為公司應遵守的道德倫理守則,以確保開發的產品或服務符合公平及道德。 提升透明度 使用者如有興趣了解演算法及其含義,企業應協助調查並了解使用者想獲知的訊息,並透過相關訊息管道提升產品及服務透明度。因此,企業應努力使演算法及其操作和含義能夠被使用者理解。此亦涉及即將實施的歐盟一般資料保護規則中的透明度義務。在機器學習或深度學習情況下,可能會增加理解性和可追溯性難度,但有助於分析流程並使其更接近人類理解的方法在科學和商業實踐中,應特別關注並進一步討論。另外,透過教育及使用說明協助及控制功能,教導消費者係建立雙方信任的重要手段。企業應在第一線中說明產品或服務中使用的手段(演算法,機器學習,AI)。除了解釋使用那些技術來改進產品和服務外,應一併解釋如何從技術控制過程中獲得相關知識以及提供那些後援支持。另外,例如透過幫助頁面,儀表板或部落格,解釋發生什麼以及如何做出某些影響深遠的自動化決策,使用戶更了解有關使用自動決策相關訊息。因此建議企業採取強制有效以建立信任的措施,使用戶理解是否及如何使用相關演算法,此可能包括使用自動化決策,使用特定資料組和使用技術的目的,亦即使用戶對演算法,機器學習或AI支持的決策有基本的了解。 為全體利益使用相關技術 人工智慧等新技術之重要性不應被低估,目前在生活和工業等眾多領域皆有廣泛應用。對於個人和集體而言,將可帶來巨大的利益,因此應該充分利用。例如,人工智慧可降低語言障礙,幫助行動不便的人可更加獨立自主生活,改善醫療診斷,提升能源供應效率,甚至是交通規劃和搜索停車位,都只是人工智慧偉大且已被使用的案例。為促進技術發展,應公平地利用其優勢並預留商業應用模式的空間,同時充分解決涉及的具體風險。產業特定的解決方案十分重要,但應兼顧受影響者的利益,並與廣大公眾利益找出妥協平衡點,且應排除不適當的歧視。建議在使用決策支持技術時,應事先檢查相關後果並與其利益比較。例如,可以在資料保護影響評估的框架進行。作為道德準則的一部分,必須確保演算法盡可能量準確地預測結果。 開發安全的資料基礎 資料係人工智慧支援決策的基礎。與人為決策者相同,資料不完整或錯誤,將導致做出錯誤的決定。因此決策系統的可靠性仍取決資料的準確性。但資料質量和資料來源始終不能追溯到源頭,如果可能的話,只有匯總或非個人資料可用於分析或分類用戶群組。因此,確切細節不可被使用或揭露。因此建議企業應考慮要使用的資料、資料的類別和在使用AI系統前仔細檢查資料使用情況,特別是在自我學習系統中資料引入的標準,並根據錯誤來源進行檢查,且儘可能全面記錄,針對個人資料部分更應謹慎處理。 解決機器偏差問題 應重視並解決所謂機器偏差和演算法選擇和模型建立領域的相關問題。解釋演算法,機器學習或AI在基層資料選擇和資料庫時所產生決策偏見相當重要,在開發預期用途的演算法時必須納入考量,對員工應針對道德影響進行培訓,並使用代表性紀錄來創建可以識別和最小化偏差的方法。企業並應該提高員工的敏感度並培訓如何解決並減少機器偏見問題,並特別注意資料饋送,以及開發用於檢測模式的內、外部測試流程。 適合個別領域的具體措施和文件 在特別需要負責的決策過程,例如在車輛的自動控制或醫療診斷中,應設計成由責任主體保留最終的決策權力,直到AI的控制品質已達到或高於所有參與者水平。對類人工智慧的信任,並非透過對方法的無條件追踪來實現,而是經過仔細測試,學習和記錄來實現
論政府資料探勘應用之個人資料保護爭議